

ROYAL ENERGY PROPERTIES, LLC

STORMWATER POLLUTION PREVENTION PLAN

183 Main Street
New Paltz, NY 12561
T 845.255.0210
www.willinghamengineering.com

Project Location:
1666 US Route 9W
Town of Marlborough
Ulster County, New York

Owner:
Royal Energy Properties, LLC
1666 Route 9W
Milton, New York 12547

September 2019
Revised: October 2019

Table of Contents

1.0 INTRODUCTION.....1

1.1 OVERVIEW	1
1.2 LAND DISTURBANCE.....	2

2.0 EXISTING CONDITIONS2

2.1 SITE SOILS AND GROUND COVER DESCRIPTION	2
2.2 HYDROLOGIC SOIL GROUP INFORMATION	3
2.3 NAME OF RECEIVING WATERS.....	3
2.4 ENVIRONMENTALLY SENSITIVE AREAS.....	3

3.0 STORMWATER OBJECTIVES**3**

4.0 STORMWATER MANAGEMENT PLAN**5**

4.1 NARRATIVE	5
4.2 CALCULATION METHODOLOGY	5
4.3 QUALITATIVE ANALYSIS.....	5
4.4 REDEVELOPMENT ACTIVITY	7
4.5 SITE DESIGN.....	7
4.6 PRE DEVELOPMENT CONDITIONS	8
4.7 POST DEVELOPMENT CONDITIONS	9
4.8 PRE-AND POST-DEVELOPMENT FLOW COMPARISON.....	9
4.9 WATER QUALITY TREATMENT	10
4.10 GREEN INFRASTRUCTURE PRACTICES.....	10

5.0 CONSTRUCTION SEQUENCING SCHEDULE.....10

5.1 CONSTRUCTION SEQUENCE	11
---------------------------------	----

6.0 EROSION AND SEDIMENT CONTROL MEASURES.....11

6.1 GENERAL.....	11
6.2 TIMING OF CONTROL MEASURES	12
6.3 PLANNED EROSION AND SEDIMENT CONTROL PRACTICES.....	12
6.3.1 STABILIZED CONSTRUCTION ENTRANCE	12
6.3.2 SILT FENCING.....	12
6.3.3 DUST CONTROL.....	13
6.3.4 STRAW BALES	13

6.3.5	TEMPORARY SEDIMENT BASIN	13
6.3.6	STONE CHECK DAM	13
6.3.7	TEMPORARY DIVERSION SWALES.....	14
6.3.8	TREE PRESERVATION AND PROTECTION.....	14
6.3.9	TEMPORARY SOIL STOCKPILES.....	14
6.3.10	LIMIT OF DISTURBANCE.....	14
6.3.11	LAND GRADING.....	14
6.3.12	TEMPORARY VEGETATIVE COVER (DURING CONSTRUCTION).....	15
6.3.13	PERMANENT VEGETATIVE COVER (AFTER CONSTRUCTION)	15
6.3.14	WATER BARRIERS	16
6.3.15	DEWATERING	16
6.3.16	OUTLET STABILIZATION STRUCTURES	16
6.3.17	CONCRETE WASHOUT AREA.....	16
6.4	GENERAL INSPECTION AND MAINTENANCE PRACTICE.....	17
6.4.1	PRE-CONSTRUCTION INSPECTION AND MAINTENANCE.....	17
6.4.2	CONSTRUCTION INSPECTION AND MAINTENANCE	17
6.5	REPORTING	19
6.5.1	INSPECTION / MAINTENANCE REPORTS	19
6.5.2	SITE LOG BOOK.....	19
6.5.3	POST CONSTRUCTION.....	19

7.0 STORMWATER MEASURES **19**

7.1	BIORETENTION AREA.....	19
7.1.1	BIORETENTION - DESIGN.....	19
7.1.2	MAINTENANCE AND INSPECTION.....	20
7.2	STORMWATER PONDS	20
7.2.1	DESIGN	20
7.2.2	MAINTENANCE AND INSPECTION.....	21

8.0 GOOD HOUSEKEEPING AND MATERIAL MANAGEMENT PRACTICES **21**

8.1	GENERAL.....	21
8.2	CHEMICAL.....	21
8.3	FUELS AND OIL	21
8.4	FERTILIZERS	21
8.5	SANITARY WASTE FACILITIES.....	22
8.6	CONCRETE AND ASPHALT TRUCKS.....	22

9.0 CERTIFICATIONS **23**

9.1	PREPARER OF THE SWPPP	23
9.2	SITE CONTRACTOR AND SUB-CONTRACTORS	24

APPENDICES

APPENDIX A: SOILS DATA

APPENDIX B: EROSION AND SEDIMENT CONTROL PLANS

APPENDIX C: NOTICE OF INTENT (NOI)

APPENDIX D: GP-0-15-002

APPENDIX E: WEEKLY INSPECTION FORM

APPENDIX F: MS4 ACCEPTANCE FORM

APPENDIX G: HYDROCAD ANALYSIS

APPENDIX H: DRAINAGE MAPS

APPENDIX I: STORMWATER CALCULATIONS

APPENDIX J: CONSTRUCTION INSPECTION AND MAINTENANCE CHECKLISTS

APPENDIX K: NRCC MEAN PRECIPITATION FREQUENCY ESTIMATES

1.0 INTRODUCTION

1.1 Overview

This Stormwater Pollution Prevention Plan (SWPPP) has been prepared for the Applicant and Owner, Royal Energy Properties, LLC. The property is approximately 4.9 acres in size and is located at 1666 Route 9W in the Town of Marlborough. The existing use of the parcel is cold storage, with several buildings located on site which will be demolished to allow for the proposed building at the site. Additional site improvements include parking lot expansion and resurfacing, gravel emergency vehicle access road, landscaping, subsurface wastewater disposal system, and water supply well. The property is bordered to the south and east by an active farm, to the north by a single family home and to the west by Route 9W.

The Applicant is proposing to expand the existing cold storage facility on the site. All proposed land disturbance is in relation to the development of the storage facility and its associated improvements.

This Stormwater Pollution Prevention Plan (SWPPP) has been developed in accordance with New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity Permit No. GP-0-15-002, dated January 12, 2015 which authorizes stormwater discharges to surface waters of the State from the following construction activities identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:

1. Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a larger common plan of development or sale that will ultimately disturb one or more acres of land; excluding routine maintenance activity that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
2. Construction activities involving soil disturbances of less than one (1) acre where the Department has determined that a SPDES permit is required for stormwater discharges based on the potential for contribution to a violation of a water quality standard or for significant contribution of pollutants to surface waters of the State.
3. Construction activities located in the New York City, East of Hudson watershed, that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.

This project qualifies for SPDES coverage under provision 1 as stated above.

The objectives of this SWPPP are as follows:

- To develop a sediment and erosion control plan in accordance with the most current version of the technical standard, New York State Standards and Specifications for Erosion

and Sediment Control, which implements best management practices to stabilize disturbed areas, protect off site areas and sensitive areas and minimize the transport of sediment.

- To develop the permanent stormwater management system for the site which will control the rate of stormwater discharge from the site after construction, reduce the overall volume of runoff being discharged from the site and treat the stormwater for runoff pollutants. The stormwater management system has been designed in accordance with the most current version of the technical standard, New York State Department of Environmental Conservation Stormwater Management Design Manual (the Design Manual).

Construction activities are not permitted to begin until such time that authorization is obtained under the General Permit. This project is located within a designated Municipal Separate Storm Sewer System (MS4) area and thus must be reviewed by the Municipalities designated Stormwater Officer. Authorization to commence construction activities may commence five (5) days following receipt of the Notice of Intent (NOI) accompanied by the MS4 Acceptance Form.

A copy of the General Permit, SWPPP, NOI, NOI acknowledgment letter, MS4 SWPPP acceptance form, inspection reports and accompanying plans shall be maintained on-site from the date of initiation of construction activities until final stabilization of all disturbed areas has been achieved and the Notice of Termination (NOT) has been submitted.

1.2 Land Disturbance

Per the General Permit, no more than five (5) acres of land disturbance may occur at any one time without written approval from the NYSDEC.

Disturbance of more than five (5) acres at any one time is not anticipated for this project, as the total disturbance is approximately 3.7 acres. For areas where construction activity temporarily or permanently ceases, stabilization measures must be initiated by the end of the next business day and be completed within fourteen (14) days of the date that the soil disturbance activity ceased in accordance with the SPDES permit.

2.0 EXISTING CONDITIONS

2.1 Site Soils and Ground Cover Description

The 4.9-acre parcel proposed for development is primarily developed with buildings. The parcel also contains grass areas and wooded areas with the majority of development occurring in previously developed areas. The soils encountered on the portion of the site proposed for development consist of Bath and Nassau soils. On-site soil classifications and their approximate

boundaries have been taken from the *Ulster County Soil Survey*. The soil locations are shown on the attached Erosion & Sediment Control Plan. Site soils include the following soil types:

Table 2.1 Soil Types		
Soil Name	Soil Symbol	Hydrologic Soil Group
Bath Nassau complex	BNC	C
Bath-Nassau-Rock Outcrop Complex	BOD	C

2.2 Hydrologic Soil Group Information

Type A-Soils- These soils have low runoff potential when thoroughly wet. Soils are excessively drained and are typically comprised of less than 10 percent clay and more than 90 percent sand or gravel.

Type B-Soils- These soils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures.

Type C-Soils- These soils have a moderately high runoff potential when thoroughly wet. These soils are poorly drained and typically contain between 20 and 40 percent clay and less than 50 percent sand or gravel.

Type D-Soils- These soils have high runoff potential, with low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, high water table, and shallow soils over impervious material.

Additional soils data can be found in the Appendices.

2.3 Name of Receiving Waters

All drainage flows from the property into an existing unnamed stream on the north side of the property. The stream flows to the north then east and then outlets into the Hudson River, approximately $\frac{1}{2}$ a mile northeast of the project site.

2.4 Environmentally Sensitive Areas

There are no environmentally sensitive areas located on the project site.

3.0 STORMWATER OBJECTIVES

Development of the site will result in several impacts to the existing drainage patterns at the site, both during and after construction. During construction, there is potential for erosion as disturbed areas are not yet vegetated. This lack of vegetation during construction creates the potential for significant amounts of sediment to enter the existing wetlands and watercourses. Excess sediment can be damaging to existing habitats both on-site and downstream.

Temporary and permanent erosion control measures shall be implemented to reduce sediment discharge from the site into wetlands and watercourses located on adjacent properties. Best Management Practices will be incorporated for all erosion and sediment control practices and may include the use of silt fence, temporary silt basins, silt barriers, diversion swales, sediment forebays, check dams, stone construction entrances, rip rap, and vegetative means both during and after construction. Permanent erosion and sediment control measures to be implemented may include, but are not limited to, establishment of a stabilizing ground cover in all areas, storm sewers, catch basins and water quality treatment units. Specific measures will be implemented to ensure the protection of the site's undisturbed areas, to limit soil transport and to provide for increased monitoring of stormwater management and erosion control facilities throughout the construction process.

This SWPPP will describe provisions for the treatment of the Water Quality Volume (WQv) and Runoff Reduction Volume (RRv) and for the attenuation of the Overbank Flood Flow (Qp – “10 year storm”) and Extreme Flood Flow (Qf – “100 year storm”) as defined by the NYSDEC Manual.

The stormwater management system has been designed to meet the Channel Protection (CPv) requirement set forth in the Design Manual. According to the NYSDEC Manual CPv is not required at sites where the resulting diameter of the ED orifice is too small to prevent clogging, which it was in this case. Therefore, meeting the full CPv requirement is considered inappropriate for this site. The outlet orifices within the pond outlet control structure, which are designed to outlet runoff from the 1-year storm event, have been sized as small as possible to prevent frequent clogging, which is discussed in Section 4.4 of the Design Manual. A 4" diameter outlet with a trash rack is proposed on the outlet control structure. The maximum flow rate exiting the pond during the 1-year storm is 0.91 cfs, a flow that will not be erosive to downstream channels.

As noted above, the stormwater management system will meet all conditions set forth in the Design Manual with regards to Water Quality Volume (WQv). All of the stormwater runoff from disturbed / improved areas will be directed to either one of the bioretention areas, and/or the stormwater pond where the runoff will be treated and discharged into the existing stormwater conveyance system located east of the site, at rates no greater than existing runoff rates.

Runoff Reduction Volume (RRv) will also be achieved at the site to replicate pre-development hydrology, in accordance with conditions set forth in the Design Manual. The RRv requirement will be satisfied by the bioretention areas, which are considered to be standard stormwater management practices with RRv capacity. In accordance with the Design Manual, the Specific Reduction Factor may be applied to the total calculated RRv. This factor accounts for the absorptive capacity of on-site hydrologic soil groups in order to determine the RRv which is considered feasible for a specific site. As noted in the redevelopment section, RRv is not required for areas of the site proposed as redevelopment.

4.0 STORMWATER MANAGEMENT PLAN

4.1 Narrative

A Drainage Analysis was completed to assess the pre-and post-development runoff rates for the 1-year, 10-year and the 100-year storm events. This Drainage Analysis provides a calculation model for the operation of the stormwater management system and structures being proposed. The following summarizes the findings from this drainage analysis.

4.2 Calculation Methodology

The design storms analyzed in this study are the 1-year, 10-year and the 100-year, 24-hr. duration storm events. The Soil Conservation Service (SCS) TR 55 method for establishing runoff curve numbers and times of concentration was used along with the Soil Conservation Service TR 20 method to analyze peak runoff rates, and to develop hydrographs, routing, storage requirements and structure design. Applied Microcomputer Systems HydroCAD (v10.00) computer modeling software was utilized.

The time of concentration was computed to determine the time for an entire watershed to contribute runoff to a specific location. The method incorporates watershed characteristics such as slope, length, and runoff curve number. Flow paths used in this analysis of each watershed are shown on the attached Drainage Maps. Runoff curve numbers were calculated by takeoff of coverage areas using AutoCAD software.

Rainfall events and types were obtained from the Northeast Regional Climate Center, which provides local, specific rainfall events for a particular location. Rainfall information from the NRCC is included in the Appendix.

The quantitative analysis has been conducted to determine the optimal sizing and volumetric capacities of the proposed stormwater system components in order to prevent any increase in runoff rates at the Stormwater Discharge Points (SDP) as a result of the proposed site development. The analysis proves that there will not be an increased rate of runoff as a result of site development at either SDP during the 1 year, 10 year and 100 year rain events. The stormwater management system has been designed to meet the conditions for Q_p , and Q_f as per the NYSDEC Design Manual. Pre and Post development drainage calculations and maps are included in the Appendix.

4.3 Qualitative Analysis

Stormwater run-off is recognized as a major contributor of pollution that can adversely affect the quality of receiving water bodies. Water quality contaminants are transported from land, particularly impervious surface, during the initial stages of storm events. The initial stormwater volume created as part of the storm event is referred to as the Water Quality Volume (WQV).

This is the target volume to be treated with the proposed stormwater measures as per the Design Manual.

The Water Quality Volume (WQv) can be determined using the following equation from Section 4 of the New York State Stormwater Design Manual:

$$WQv = (P) * (R_v) * (A) / 12$$

Where:

WQv = Water quality volume (in acre-feet)

P = 90% Rainfall Event Number

R_v = .05 + 0.009 * (I), where I is percent impervious

A = Site area in acres

Two bioretention areas, and a stormwater pond were incorporated into the stormwater management system to capture and treat the WQv identified for the site. Each practice has been designed in accordance with the Design Manual, latest edition. Calculations for WQv are included as an Appendix.

In addition to the WQv treatment required, the Runoff Reduction Volume (RRv) must be satisfied / reduced by Green Infrastructure Practices (GIP's) or by standard stormwater management practices (SMP's) with RRv capacity as detailed in the Design Manual. Runoff Reduction of 100% of the post-development WQv must be achieved through stormwater infiltration, groundwater recharge, reuse, recycle, evaporation / evapotranspiration in order to replicate pre-development hydrology by maintaining pre-construction infiltration, peak runoff flow, discharge volume, as well as minimizing concentrated flow by using runoff control techniques to provide treatment in a distributed manner before runoff reaches the collections system. As mentioned above, this requirement can be accomplished by the application of GIP's and/or standard SMP's with RRv capacity.

Projects that cannot meet 100% of the runoff reduction requirement due to site limitations that prevent or limit the use of infiltration techniques shall identify the specific site limitations. As previously mentioned, the Specific Reduction Factor may be used to provide a reduction to the required RRv at a specific site if deemed appropriate.

The minimum RRv can be determined using the following equation from Section 4 of the Design Manual:

$$RRv = (P) * (R_v) * (Ai) / 12$$

Where:

RRv = Runoff Reduction Volume (in acre-feet)

Ai = (S) * (Aic)

Ai = Impervious cover targeted for runoff reduction

Aic = Total area of new impervious cover

P = 90% Rainfall Event Number

Rv = $.05 + 0.009 * (I)$, where I is percent impervious

S = Hydrologic Soil Group (HSG) Specific Reduction Factor (HSG A = 0.55, HSG B = 0.40, HSG C = 0.30, HSG D = 0.20)

Two bioretention areas with underdrains are proposed to provide the required minimum runoff reduction volume for the site. The practices were sized in accordance with the Design Manual and provided as an Appendix.

4.4 Redevelopment Activity

Redevelopment of previously developed sites is encouraged from a watershed protection standpoint because it often provides an opportunity to conserve natural resources in less impacted areas by targeting development to areas with existing services and infrastructures. At the same time, redevelopment provides an opportunity to correct existing problems and reduce pollutant discharges from older developed areas that were constructed without effective stormwater pollution controls.

In accordance with the Design Manual, redevelopment activity is considered when a project includes disturbance and reconstruction of existing impervious surfaces. As described above, the site currently contains several buildings and paved / gravel driveways which are proposed to be demolished. The existing conditions and demolition plans show the impervious surfaces (interior gravel driveway areas and buildings) which will be removed as part of the proposed development. These impervious surfaces proposed to be removed on the site are considered redevelopment areas.

The Design Manual provides alternative sizing criteria for stormwater management practices proposed as part of redevelopment activities. Implementation of the alternative sizing criteria will result in pollution reductions over existing conditions with no or substandard practices in place.

The alternative sizing criteria to be utilized for water quality volume at this site is described in option 2 of Chapter 9 of the manual. Option 2 states that a minimum of 25% of the WQv from the disturbed impervious area is captured and treated by the implementation of standard stormwater management practices or reduced by application of green infrastructure techniques. RRv is not required for redevelopment areas. The stormwater management practices proposed to treat impervious surfaces not considered redevelopment activity are required to satisfy the full WQv and RRv.

4.5 Site Design

As required by the SPDES permit, the majority of runoff from impervious surfaces at the site is directed to either an RR technique or standard SMP with RRv capacity. This runoff enters either

one of the bioretention facilities or the stormwater pond, where the RRv requirement is satisfied and the WQv is treated. The runoff from the site outlets to the existing stream north of the site. The “treatment train”, as required by the Design Manual provides a high level of water quality treatment, efficiently removing pollutants before discharging to the downstream wetland and watercourse system.

Pretreatment is provided for all stormwater management practices as needed. Pretreatment for the bioretention facilities is provided by a mulch layer over the bioretention planting bed and by grass channels. All runoff from impervious surfaces entering the bioretention area comes from roof runoff so there will not be the significant levels of sediments and pollutants found in surface runoff. Pretreatment for the pond from parking lot runoff will be provided by a sediment forebay which will collect sediments and pollutants. Roof runoff is not required to be pretreated as sediments and pollutants will not be present as they are in surface runoff.

Please see below for a summary table of the WQv and RRv. For additional information please see the Appendices.

Parameter	Required	Provided	Practice / Information
WQv	6,265 cf	7,329 cf	Bioretention Facility 1 – 4,349 cf
			Bioretention Facility 2 – 936 cf
			Pond Permanent Pool – 2,044 cf
RRv	1,333 cf	1,919 cf	Bioretention Facility 1 – 1,545 cf
			Bioretention Facility 2 – 374 cf

4.6 Pre Development Conditions

The existing watershed area that will be impacted as a result of the proposed development is shown on the Pre Development Drainage Map, which is included as an Appendix. Pertinent information relating to this watershed is summarized in the table below.

Table 4.2 Pre-Development Conditions					
Sub catch	Area (acre)	Cover Condition	Curve Number	Soil Group	Time of Conc. (min)
EX-1	4.944	Paved Parking, Buildings, Concrete, Gravel, Woods, Grass	87	C	24.3

For a more detailed description of the watershed, refer to the pre-development drainage calculations included in the Appendix.

4.7 Post Development Conditions

The post-development watershed area is shown on the Post-Development Drainage Map, which is included in the Appendix. Pertinent information relating to the watershed is summarized in the table below.

Table 4.3 Post-Development Conditions

Sub catch	Area (acre)	Cover Condition	Curve Number	Soil Group	Time of Conc. (min)
PR-B-1	0.317	Buildings	98	C	6.0
PR-B-2	0.490	Grass, Buildings	90	C	10.8
PR-EX	1.569	Pavement, Buildings, Concrete, Woods, Gravel, Grass	89	C	20.0
PR-P-1	2.443	Buildings, Gravel, Pavement, Grass	93	C	15.5
OFFSITE	0.740	Pavement, Grass	83	C	17.9

For a more detailed description of the watersheds, refer to the HydroCAD drainage calculations included as an Appendix.

4.8 Pre-and Post-Development Flow Comparison

The quantitative analysis focuses on pre-development versus post-development flow rates at the Stormwater Discharge Point (SDP). The analysis proves that no impact will result at any of the SDPs with respect to stormwater quantity for the 1, 10 or 100 year storm events.

The pre-and post-development watershed areas have been analyzed to determine stormwater runoff flow rates at each SDP. Table 4.4 compares pre-and post-development peak runoff rates during all storm events analyzed for the watershed area.

Table 4.4 Pre vs. Post Runoff Rates at SDPs

Design Point	1-Year Storm Event (cfs)		10-Year Storm Event (cfs)		100-Year Storm Event (cfs)	
	Pre	Post	Pre	Post	Pre	Post
SDP-1	5.04	3.03	11.54	11.43	22.81	22.01

As shown on Table 4.4, there is a decrease in runoff rates from pre-development to post-development conditions for each design storm. The HydroCAD drainage analysis which was used to calculate these values can be found in the Appendix.

4.9 Water Quality Treatment

The qualitative analysis focuses on the methods proposed to provide treatment of the Water Quality Volume (WQv) in order to prevent pollutants from being discharged into existing wetlands and watercourses, post-development and satisfaction of the Runoff Reduction Volume (RRv) in order to replicate pre-development hydrologic conditions. The WQv and RRv calculations have been provided in the Appendices. The following is a brief description of the water quality practices, which were designed in accordance with the Design Manual.

The bioretention areas have been designed to capture and treat the required Water Quality Volume (WQv) and Runoff Reduction Volume (RRv). Runoff from the building and paved surface adjacent to the bioretention areas will be directed into the bioretention areas, which have been sized according to the WQv and the required RRv for this portion of the site. The remaining WQv will be satisfied by the permanent pool in the pond which collects the stormwater runoff from the remainder of the developed site. The bioretention areas, and pond meet the requirements set forth in the NYSDEC Design Manual, including but not limited to pretreatment, landscaping and maintenance access.

4.10 Green Infrastructure Practices

Green Infrastructure Planning Practices were utilized in order to preserve sensitive areas, reduce impervious cover and promote reduction of the total runoff volume discharging from the site.

- Development is located in areas previously developed to preserve undisturbed areas and locate development in less sensitive areas.
- Pavement areas, buildings and associated development were located at the less steep portion of the property to best fit site terrain.
- Post construction, all soil in disturbed areas will be restored to their original properties by way of deep tilling and compost amendment. After soil restoration has occurred, these areas will then be vegetated in order to maintain the restored soil structure which will help to absorb rainwater, prevent flooding and erosion and filter out pollutants.

5.0 CONSTRUCTION SEQUENCING SCHEDULE

Construction activities shall be scheduled in such a manner as to minimize the impacts that stormwater will have during construction on receiving waters both on and off-site. The total area of disturbance for the proposed project is approximately 3.7 acres.

5.1 Construction Sequence

The project will be constructed in controlled phases to minimize overall disturbance. Erosion Controls must be installed prior to the start of construction and must be maintained throughout the construction process. Each phase of the project will have a specific construction sequencing schedule to ensure proper temporary and permanent erosion controls are in place. The Contractor will be responsible for implementing the sequencing schedule.

A typical sequencing schedule will be provided on the “Erosion and Sediment Control Plan”. The schedule will address the following items.

- Pre-Construction Activities
- Installation of erosion and sediment control (ESC) measures
- Approval of ESC measures
- Land clearing and grading activities
- Maintenance of ESC measures and installation of additional ESC measures
- Installation of utilities
- Surface stabilization
- Building construction
- Landscaping and final stabilization
- Final inspection

6.0 EROSION AND SEDIMENT CONTROL MEASURES

6.1 General

The most sensitive stage of the development cycle is the period when vegetation is cleared and a site is graded. The potential impacts to on-site and off-site receiving waters and adjoining properties are particularly high at this stage. For example, trees and topsoil are removed, soils are exposed to erosion, and natural topography and drainage patterns are altered. Control of erosion and sediment during these periods is an essential function of this SWPPP and accompanying plans.

Effective and practical measures employed to minimize the erosion potential and prevent sediment from leaving the construction site and reaching streams or other water bodies have been recommended in accordance with:

- New York State Standards and Specifications for Erosion and Sediment Control, Latest Edition

In order to ensure the effectiveness of the measures recommended herein, routine inspections and documentation, along with procedures for monitoring the findings, maintenance, and corrective actions resulting from each inspection are outlined within this section of the SWPPP.

6.2 Timing of Control Measures

As indicated above in the Construction Sequence Schedule, all erosion and sediment control measures shall be installed prior to commencing any clearing or grading of the site. Structural controls (i.e. check dams) shall be installed concurrently with the applicable activity. Areas where construction activity temporarily or permanently cease shall have stabilization initiated by the end of the next business day and be completed within fourteen (14) days of the last disturbance in accordance with the SPDES permit. Once construction activity ceases permanently in an area, silt fences and hay bale barriers and any earth/dikes shall be removed once permanent vegetation/stabilization is established.

The exposed areas or soil stockpile shall have stabilization initiated by the end of the next business day and be completed within the 14-day period. Stabilization measures to be used include temporary seeding, permanent seeding, mulching and stone riprap.

During construction, runoff shall be diverted around the site with earth dikes, piping, or stabilized channels where possible. Sheet runoff from the site shall be filtered through silt fences. All storm drain inlets shall be provided with barrier filters. Stone riprap shall be provided at the outlets of drainage pipes where erosive velocities are encountered.

After major site construction has been completed, soil restoration is required across areas of the developed site where soils have been disturbed and will be vegetated in order to recover the original properties and porosity of the soil. This practice is applied in the cleanup, restoration and landscaping phase of construction followed by the permanent establishment of an appropriate, deep-rooted groundcover to help maintain the restored soil structure. Soil restoration includes mechanical decompaction, compost amendment, or both. Refer to section 5.1.6 of the NYSDEC Stormwater Management Design Manual for additional information.

6.3 Planned Erosion and Sediment Control Practices

6.3.1 *Stabilized Construction Entrance*

A stabilized construction entrance consists of a pad of aggregate overlaying a geotextile fabric located at a point where construction vehicles enter or exit a site to reduce or eliminate the tracking of sediment onto public right of ways, street, alleys or parking areas, thereby preventing the transportation of sediment into local stormwater collection systems. Efficiency is greatly increased when a washing area is included as part of a stabilized construction entrance.

Stabilized construction entrances shall be a minimum of fifty (50) feet long and twelve (12) feet wide, but not less than the full width of points where vehicles enter and exit the site. Where there is only one access point to the site, the stabilized construction entrance shall be a minimum of twenty-four (24) feet wide. Stabilized construction entrances shall be a minimum of six (6) inches in depth consisting of one (1) to four (4) inch stone or reclaimed or recycled equivalent.

6.3.2 *Silt Fencing*

A silt fence is a temporary sediment barrier consisting of a filter fabric stretched across and attached to supporting posts, entrenched, and supported with woven wire fence. Silt fences are

installed on the contours across a slope and used to trap sediment by intercepting and detaining sediment laden runoff from disturbed areas in order to promote sedimentation on the uphill side of the fence.

Silt fences are suitable for perimeter and interior control, placed below areas where runoff may occur in the form of sheet flow. It should not be placed in channels or areas where flow is concentrated. In addition to interior and perimeter control a silt fence can be applied in the following applications:

- Below the toe or down slope of exposed and erodible slopes.
- Along streams and channels banks.
- Around temporary spoil area and stockpiles.

6.3.3 *Dust Control*

Dust control measures reduce the surface and air transport of dust, thereby preventing pollutants from mixing into stormwater. Dust control measures for the construction activities associated within this project consist of windbreaks, minimization of soil disturbance (preserving buffer areas of vegetation where practical), mulching, temporary and permanent vegetation cover, barriers (i.e. geotextile on driving surfaces) and water spraying.

Construction activities shall be scheduled to minimize the amount of area disturbed at any one time.

6.3.4 *Straw Bales*

Straw bales will be placed around catch basins. Straw bales will be placed in a row with ends tightly abutting the adjacent bales. Each bale will be embedded in the soil a minimum of four inches. Bales will be securely anchored in place by stakes or re-bars driven through the bales. The first stake in each bale will be angled toward the previously laid bale to force the bales together.

6.3.5 *Temporary Sediment Basin*

Various types of sediment containment facilities, consisting of rip-rap outlet traps and pipe outlet traps may be proposed as part of the erosion and sediment control plan. These facilities purpose is to intercept sediment-laden surface runoff and enable sediment settlement prior to discharge from the site. The outlet for these traps will be properly stabilized to avoid erosion at the discharge point. Sediment traps shall be located and installed in all drainage ways, storm drain inlets, pipe outlets, grass outlets, stone outlets, riprap outlets and at other points of collection from the disturbed area. Sediment traps shall be located and installed prior to grading or filling the drainage area they are to protect.

6.3.6 *Stone Check Dam*

Check dams shall be placed in channels to reduce scour and erosion by reducing flow velocity and promoting sediment settlement. Check dams shall be spaced in the channel so that the crest of the downstream dam is at the elevation of the toe of the upstream dam. Check dams, consisting of a well-graded stone two (2) – nine (9) inches in size (NYSDOT – Light Stone) shall maintain a height of two (2) feet with side slopes of 2:1 extending beyond the bank of the channel by a

minimum of one and a half (1.5) feet. Check dams shall be anchored in the channel by a cutoff trench of one and a half (1.5) feet in width by a half (0.5) foot in depth.

6.3.7 *Temporary Diversion Swales*

Temporary diversions swales will be constructed and installed to direct runoff away from disturbed areas, as required. Swales will be installed with stone check dams to prevent downstream siltation. Diverted runoff from disturbed areas will be directed into the temporary sediment basins. Temporary diversion swales will be stabilized and operational before land disturbing activities begin.

6.3.8 *Tree Preservation and Protection*

Fencing shall be used wherever trees are to be protected adjacent to areas of disturbance. Trees to be detained within 40 feet of any proposed structure or excavation shall be protected by fencing as specified on the Erosion and Sediment Control Plan. Fences may also be used to prevent compaction or disturbance of sensitive soils.

6.3.9 *Temporary Soil Stockpiles*

Material, such as topsoil, will be temporarily stockpiled (if necessary) on the site throughout the construction. Stockpiles will be located in areas away from the path of stormwater and will be protected from erosion by a surrounding silt fence barrier. Soil and topsoil stockpiles will be seeded or stabilized by the end of the next business day they are created and completed within 14 days.

6.3.10 *Limit of Disturbance*

Construction fence: a standard, 40" high construction fence shall be used. Construction fences shall be secured at all clearing limits, using standard steel fence posts set six feet apart. If plastic mesh "mirafi" fence is used, post spacing shall be as per manufacturer's specifications.

6.3.11 *Land Grading*

A waiver to disturb an area greater than five acres at any one time will not be required prior to construction as the total land disturbance associated with this project is less than 5 acres.

- Topsoil shall be distributed to form a uniform depth over the area. It shall not be placed when it is partly frozen, muddy, or on frozen slopes or over ice, snow, or standing water.
- Topsoil placed and graded on slopes steeper than 5% shall be promptly fertilized, seeded, mulched and stabilized by "tracking" with suitable equipment.
- Apply topsoil in the following amounts for intended use:
- Mowed lawn: four to six inches
- Area not to be maintained: one to two inches
- Complete rough grading and final grade, allowing for depth of topsoil to be added.
- Scarify all compact, slowly permeable, medium and fine textured subsoil areas. Scarify at approximately right angles to the slope direction in soil areas that are steeper than 5%.

- Remove refuse, woody plant parts, stones over three inches in diameter, and other litter.
- The furnishing of new topsoil shall be of a better or equal to quality of the existing adjacent topsoil. It shall meet the following criteria:
- Topsoil shall have at least 2% by weight of fine textured stable organic material, and no greater than 6%.
- Topsoil shall have not less than 20% fine texture material (passing the no. 200 sieve) and not more than 15% clay.
- Topsoil shall be relatively free of stones over 1½" diameter, thrash, noxious weeds, and shall have less than 10% gravel by volume.

6.3.12 Temporary Vegetative Cover (during construction)

Temporary seeding may be used in disturbed areas to minimize erosion and sediment loss. Any disturbed area that will not be redisturbed for 7 days or more will be stabilized by the 7th day after the last disturbance. After grass has appeared, those areas which fail to show a uniform stand of grass shall be reseeded. This process will be repeated until all areas are covered with satisfactory growth.

- Site Preparation: same as permanent vegetative cover
- Seed Mixtures:
 - Rapidly germinating annual ryegrass (30 lbs. per acre)
 - Perennial ryegrass (100 lbs. per acre)
 - Cereal rye (30 lbs. per acre)
- Seeding: same as permanent vegetative cover

6.3.13 Permanent Vegetative Cover (after construction)

1. Site Preparation:

- Bring area to be seeded to required grade. A minimum of four inches of topsoil is required.
- Prepare seedbed-loosening soil to a depth of four to six inches.
- Remove all stones over one inch in diameter, sticks and foreign matter from the surface.
- Lime to pH of 6.5.
- Where the soil has been compacted by construction operations, loosen soil to a depth of two (2) inches before applying fertilizer, lime and seed.
- Apply fertilizer at the rate of 600 pounds per acre of 5-10-10. Apply limestone (equivalent to 50 percent calcium plus magnesium oxide) at a rate of three tons per acre.
- Incorporate lime and fertilizer in the top two to four inches of topsoil.

- Smooth and firm the seedbed.

2. Seeding:

- Apply seed uniformly by hand, cyclone seeder, or hydro-seeder (slurry including seed and fertilizer). Hydro-seeding, which includes mulch, may be left on soil surface. Seeding rates must be increased 10% when hydro-seeding.
- Mulch seeded areas with hay or straw mulch (2000 lbs./acre).
- Irrigate to fully saturate soil layer, but not to dislodge planting soil.
- Seed between April 1st and May 15th or August 15th and October 15th. Seeding may occur between May 15th and August 15th if adequate irrigation is provided.

6.3.14 Water Barriers

Water barriers will be used to prevent water from concentrating on unprotected road surfaces. The water barriers will be designed to divert runoff into a temporary sediment trap or stabilized drainage channel thereby protecting the road surface from gully erosion.

6.3.15 Dewatering

Dewatering will be used to intercept sediment-laden stormwater or pumped groundwater and allow it to settle out of the pumped discharge prior to being released from the site. Water resulting from dewatering operations shall be direct to temporary sediment traps or dewatering devices. Temporary sediment traps and dewatering bags will be provided, installed and maintained at down-gradient locations to control sediment deposits offsite. Water from dewatering operations shall be treated to eliminate the discharge of sediment and other pollutants.

6.3.16 Outlet Stabilization Structures

Rip Rap outlet protection will be placed at all pipe discharge locations, in order to reduce depth, velocity, and energy of the discharge flow and to minimize downstream erosion. A filter layer will be placed between the rip-rap and underlying soil surface to prevent soil movement into and through the rip-rap. Rock outlet protection will be designed in accordance with the New York State Guidelines for Urban Erosion and Sediment Control.

6.3.17 Concrete Washout Area

Best management practice objectives for concrete washout are to collect and retain all the concrete washout water and solids in leak proof containers, preventing caustic material from reaching the soil surface and migrating to surface waters or into ground waters. 100 percent of collected concrete washout water and solids should be recycled. Several different types of EPA approved washout containers are available, all of which are capable of containing all concrete washout materials. Washout containers should not be placed within 50 feet of storm drains, open ditches and water bodies. Washout facilities should be inspected daily during use and after heavy rains to check for leaks. When the contains has reached 75% capacity, the washwater should be vacuumed off or allowed to evaporate to avoid overflows. The hardened materials should be removed and recycled.

6.4 General Inspection and Maintenance Practice

6.4.1 *Pre-Construction Inspection and Maintenance*

Prior to the commencement of construction, a qualified professional shall conduct an assessment of the site and certify that the appropriate erosion and sediment control structures have been adequately installed and implemented.

6.4.2 *Construction Inspection and Maintenance*

Owner or Operator Maintenance Inspection Requirements:

The owner or operator shall inspect, in accordance with the requirements in the most current version of the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, the erosion and sediment controls identified in the SWPPP to ensure that they are being maintained in effective operating condition at all times.

Qualified Inspector Inspection Requirements:

The owner or operator shall have a qualified inspector conduct site inspection. In order to perform these inspections, the qualified inspector has to be a:

- Licensed Professional Engineer
- Certified Professional in Erosion and Sediment Control
- Registered Landscape Architect, or
- Someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity.

For construction sites where soil disturbance activities are on-going, the qualified inspector shall conduct a site inspection at least once every seven days.

For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.C.3 of GP-0-15-002 to disturb greater than five acres of soil at any one time, the qualified inspector shall conduct at least two site inspections every seven calendar days. The two inspections shall be separated by a minimum of two full calendar days.

The qualified inspector shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and / or address the following:

1. Date and time of inspection
2. Name and title of person performing inspection
3. A description of the weather and soil conditions at the time of inspection

4. A description of the condition of the runoff at all points of discharge from the construction site. This shall include identification of any discharges of sediment from the construction site. Include discharges from conveyance systems and overland flow.
5. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the construction site which receive runoff from disturbed areas. This shall include identification of any discharges of sediment to the surface waterbody
6. Identification of all erosion and sediment control practices that need repair or maintenance
7. Identification of all erosion and sediment control practices that were not installed properly or are not functioning as designed and need to be reinstalled or replaced
8. Description and sketch of areas that are disturbed at the time of the inspection and areas that have been stabilized (temporary and / or final) since the last inspection
9. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards
10. Corrective actions that must be taken to install, repair, replace or maintain erosion and sediment control practices; and to correct deficiencies identified with the construction of the post-construction stormwater management practice
11. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven calendar days of the date of the inspection. The qualified inspector shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The qualified inspector shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven calendar days of that inspection.

Within one business day of the completion of an inspection, the qualified inspector shall notify the owner or operator and appropriate contractor or subcontractor identified in Part III.A.6 of GP-0-15-002 of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.

All inspection reports shall be signed by the qualified inspector. The inspection reports shall be maintained on site with the SWPPP.

The contractor is responsible for the installation and maintenance of all erosion and sediment control measures throughout the course of construction.

The contractor is responsible for controlling dust by sprinkling exposed soil areas periodically with water as required. The contractor is to supply all equipment and water.

6.5 Reporting

6.5.1 *Inspection / Maintenance Reports*

Inspection/maintenance reports will be prepared prior to and during construction in accordance with the schedule outlined above, by the qualified professional. All inspection reports shall be signed by the qualified inspector. Pursuant to Part II.C.2, the inspection reports shall be maintained on site with the SWPPP.

6.5.2 *Site Log Book*

During construction, the contractor shall maintain a record of all erosion and sediment control inspection reports at the site in a log book. The site log book shall be maintained on-site and made available to the permitting authority.

6.5.3 *Post Construction*

The owner or operator shall retain a copy of the NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five years from the date that the site achieves final stabilization. This period may be extended by the Department, in its sole discretion, at any time upon written notification.

With the exception of the NOI, NOT and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.A.1), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate Department Regional Office listed in Appendix F of GP-0-15-002.

The operator shall also prepare a written summary of its status with respect to compliance with this general permit at a minimum frequency of every three months during which coverage under this permit exists. The summary should address the status of achieving the overall goal of the SWPPP. This summary shall be handled in the same manner as prescribed for SWPPP's under Part III, subsection B of the NYSDEC SPDES General Permit GP-0-15-002.

7.0 STORMWATER MEASURES

The following section describes the design of each stormwater measure and the maintenance requirements. All maintenance activities are the responsibility of the property owner. Construction specifications for each stormwater measure are identified on the approved plans.

7.1 Bioretention Area

7.1.1 *Bioretention - Design*

Stormwater runoff from the building and portions of the driveway will be directed toward the bioretention areas. This Stormwater Management practice will be integrated into the site to provide WQv treatment and to satisfy the RRv requirements.

The bioretention areas have been sized to treat the WQv and satisfy the RRv for site runoff directed to the practices in accordance with the Design Manual. Runoff in excess capacity of bioretention area 1 will rise to the invert / rim elevation of an engineered outlet control structure and be conveyed to the stormwater management pond. Runoff in excess capacity of bioretention area 2 will rise to the invert / rim elevation of an engineered outlet control structure and be conveyed to the stormwater discharge point.

Elements of the systems include grass filter strip, mulch, bioretention soil, filter fabric, gravel, 6" diameter perforated collection pipes, a 12" diameter outlet pipe and an outlet control structure.

The bioretention areas will be covered with two to three inches of mulch with grasses and various absorbent plantings, on top of a layer of engineered permeable soil 2.5 feet in depth. Captured runoff will infiltrate downward through the underlying soils, where it is filtered of pollutants. This filtered runoff will be collected by underground perforated pipes and then be directed to either the pond or the stormwater discharge point.

Pretreatment for the bioretention will be provided by a grass filter strip and mulch layer in accordance with the Design Manual. Additional pretreatment is not required as runoff primarily comes from the new building roof which will be mostly free of sediments and contaminants typically found in surface runoff.

The bioretention area will be incorporated to provide both water quality treatment and to reduce the runoff reduction volume of impervious surfaces as required.

7.1.2 *Maintenance and Inspection*

Silt / sediment shall be removed from the filter bed when the accumulation exceeds one inch. When the filtering capacity of the bioretention soil diminishes substantially (i.e. when water ponds on the surface of the filter bed for more than 48 hours), the top few inches of discolored material shall be removed and replaced with fresh material. The removed sediments shall be disposed of in an acceptable manner. Areas devoid of mulch shall be re-mulched on an annual basis. Dead or diseased plant material shall be replaced.

7.2 Stormwater Ponds

7.2.1 *Design*

The pond has been designed primarily to reduce peak flow rates discharging from the site. Additionally, the pond will have a permanent pool which will capture and treat the remaining Water Quality Volume (WQv). The lowest outlet elevation has been set above the WQv elevation to ensure the full treatment volume. The pond will have 3H:1V side slopes. The pond meets the requirements set forth in the NYSDEC Design Manual, including but not limited to pretreatment, landscaping and maintenance access. Pretreatment for surface runoff conveyed to the pond is provided by the sediment forebay. Pretreatment is not required for the runoff that comes from the building roof as the roof will be free of contaminants and sediments typically found in surface runoff.

7.2.2 *Maintenance and Inspection*

The pond shall be inspected by the owner annually and maintained as necessary. The pond berm and banks must be mowed a minimum of 2 times per year. Sediment removal should occur after 50% of total permanent pool capacity has been lost.

8.0 GOOD HOUSEKEEPING AND MATERIAL MANAGEMENT PRACTICES

8.1 General

The following good housekeeping and material management practices shall be followed to reduce the risk of spills or exposure of materials to stormwater runoff.

8.2 Chemical

Chemicals used on-site shall be kept in small quantities and stored in closed water tight containers undercover in a neat and orderly manner and kept out of direct contact with stormwater. Chemical products shall not be mixed with one another unless recommended by manufacturer.

All on-site personnel shall have access to material safety data sheets (MSDS) and National Institute for Occupational Safety and Health (NIOSH) Guide to Chemical Hazards (latest edition) for all chemicals stored and used on-site.

Manufacturer's and/or Federal, State, County and Local guidelines for proper use and disposal shall be followed. Any spills or contamination of runoff with chemicals shall be contained, collected, cleaned up immediately and disposed of in accordance with Federal, State, County and Local regulations.

8.3 Fuels and Oil

All on-site vehicles, tools, and construction equipment shall be monitored for leaks and receive regular preventive maintenance to reduce the chance of leakage. On-site vehicle and equipment refueling shall be conducted at a location away from access to surface waters and runoff. Any on-site storage tanks shall have a means of secondary containment. Oil products shall be kept in their original containers with original manufacturer's label. In the event of a spill, it shall be contained, cleaned up immediately and the material, including any contaminated soil, shall be disposed of in accordance with Federal, State, County and Local regulations.

Fuel and oil spills in excess of reportable quantities shall be reported to the NYSDEC as soon as the discharge is discovered.

8.4 Fertilizers

Fertilizers used on-site shall be stored in closed water tight containers undercover in a neat orderly manner and kept out of direct contact with stormwater. Manufacturer's and/or Federal, State, County and Local guidelines for proper use and disposal shall be followed. Any spills or

contamination of runoff with fertilizers shall be contained, collected, cleaned up immediately, and disposed of in accordance with Federal, State, County and Local regulations.

8.5 Sanitary Waste Facilities

Should portable units be located on-site, they shall be placed in upland areas away from direct contact with surface waters. They shall be serviced and cleaned on a weekly basis by a licensed portable toilet and septic disposal service. Any spills occurring during service shall be cleaned up immediately and disposed of in accordance with Federal, State, County, and Local regulations.

8.6 Concrete and Asphalt Trucks

Concrete and asphalt trucks shall not be allowed to wash out or discharge surplus material on-site unless within an approved washout facility.

9.0 CERTIFICATIONS

9.1 Preparer of the SWPPP

The following certification will be signed by the preparer of the final SWPPP to accompany the site plan and subdivision set.

"I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-15-002. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and / or administrative proceedings."

Name	Andrew Willingham, PE
*Title	Principal
Firm/Business Name	Willingham Engineering, PLLC
Address	10 Main Street – Suite 321
Telephone Number	(845) 255-0210

Signature _____

Date _____

* Person providing signature shall meet the requirements of Part V.H. of General Permit GP-0-15-002

9.2 Site Contractor and Sub-Contractors

The general contractor, and all subcontractor's involved with construction activity that disturbs site soil or who implement erosion and sediment control measures identified in this preliminary SWPPP, and subsequent SWPPP's for the project are responsible for complying with the requirements set forth in the NYSDEC SPDES Permit GP-0-15-002 and therefore must provide the following certification.

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the qualified inspector during a site inspection. I also understand that the owner or operator must comply with the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater discharges from construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations."

Name _____

*Title _____

Firm/Business Name _____

Address _____

Telephone Number _____

Signature _____

Date _____

Person providing signature shall meet the requirements of Part V.H. of General Permit GP-0-15-002

APPENDICES

APPENDIX A: SOILS DATA

APPENDIX B: EROSION AND SEDIMENT CONTROL PLANS

APPENDIX C: NOTICE OF INTENT (NOI)

APPENDIX D: GP-0-15-002

APPENDIX E: WEEKLY INSPECTION FORM

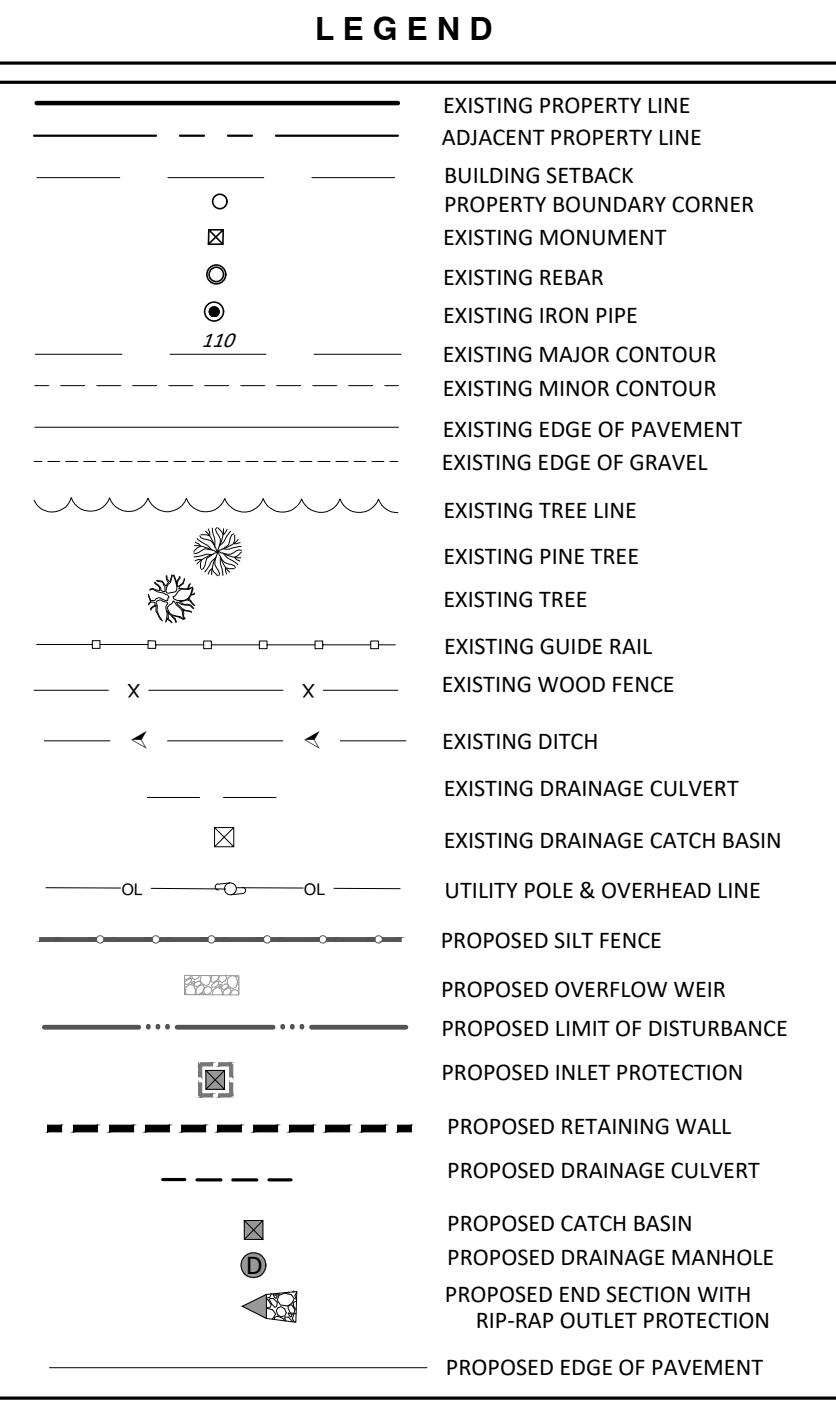
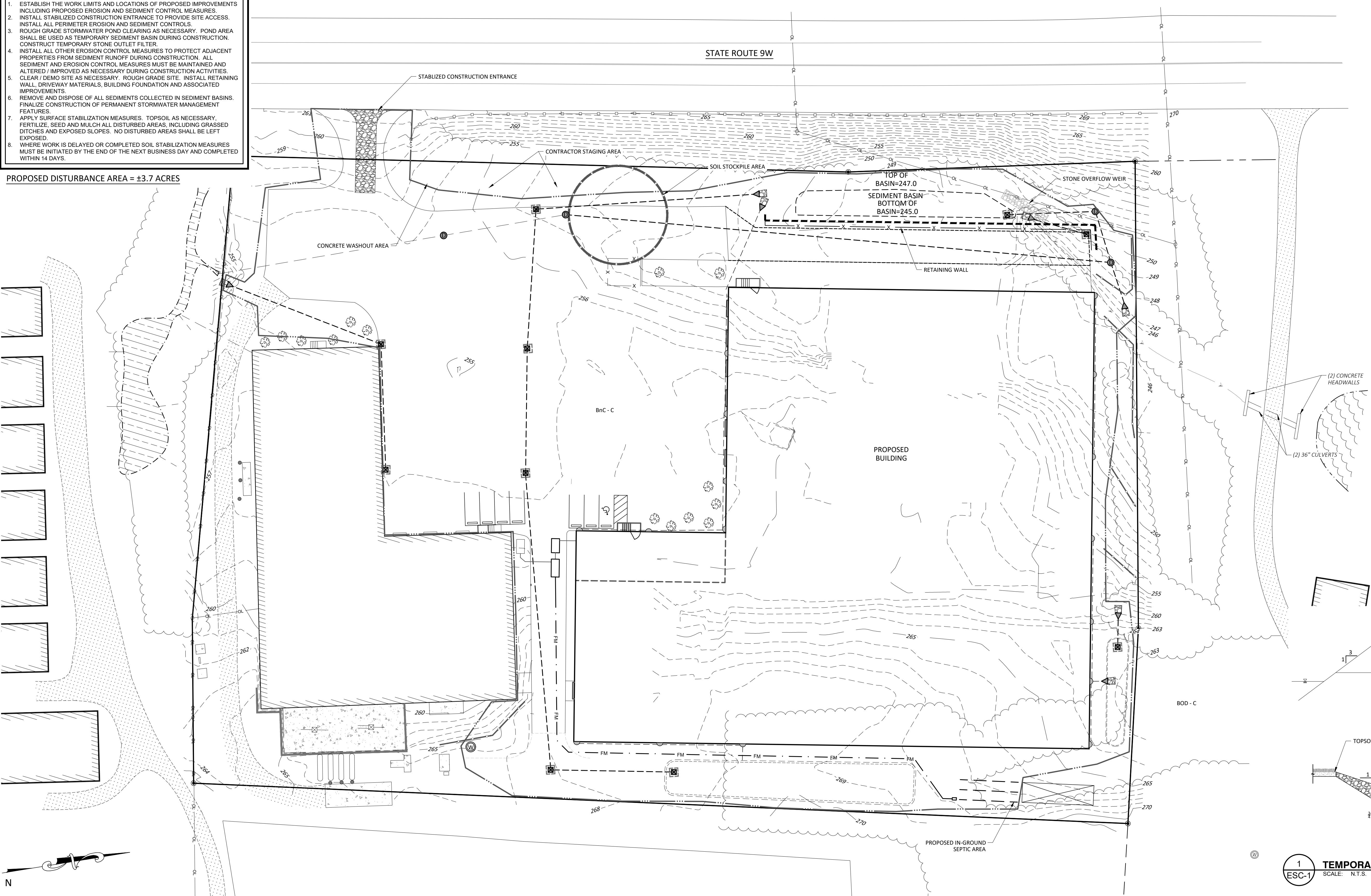
APPENDIX F: MS4 ACCEPTANCE FORM

APPENDIX G: HYDROCAD ANALYSIS

APPENDIX H: DRAINAGE MAPS

APPENDIX I: STORMWATER CALCULATIONS

APPENDIX J: CONSTRUCTION INSPECTION AND MAINTENANCE CHECKLISTS



APPENDIX K: NRCC MEAN PRECIPITATION FREQUENCY ESTIMATES

APPENDIX B

EROSION & SEDIMENT CONTROL PLANS

CONSTRUCTION SEQUENCING SCHEDULE

1. ESTABLISH THE WORK LIMITS AND LOCATIONS OF PROPOSED IMPROVEMENTS
2. INSTALL STABILIZED CONSTRUCTION ENTRANCE TO PROVIDE SITE ACCESS.
3. INSTALL ALL PERIMETER EROSION AND SEDIMENT CONTROL MEASURES. IF A POND IS NECESSARY, POND AREA SHALL BE USED AS TEMPORARY SEDIMENT BASIN DURING CONSTRUCTION.
4. CONSTRUCT TEMPORARY STONE OUTLET FILTER.
5. INSTALL ALL OTHER EROSION CONTROL MEASURES TO PROTECT ADJACENT PROPERTIES FROM SEDIMENT RUNOFF DURING CONSTRUCTION. ALL SEDIMENT AND EROSION CONTROL MEASURES MUST BE MAINTAINED AND ALTERED / IMPROVED AS NECESSARY DURING CONSTRUCTION ACTIVITIES.
6. CLEAR / DEMO SITE AS NECESSARY. ROUGH GRADE SITE, INSTALL RETAINING WALL, DRIVEWAY MATERIALS, BUILDING FOUNDATION AND ASSOCIATED SUPPORTS.
7. REMOVE AND DISPOSE OF ALL SEDIMENTS COLLECTED IN SEDIMENT BASINS. FINALIZE CONSTRUCTION OF PERMANENT STORMWATER MANAGEMENT FEATURES.
8. APPLY SURFACE STABILIZATION MEASURES, TOPSOIL AS NECESSARY. FERTILIZE, SEED AND MULCH ALL DISTURBED AREAS, INCLUDING GRASSED DITCHES AND EXPOSED SLOPES. NO DISTURBED AREAS SHALL BE LEFT EXPOSED.
9. WHERE WORK IS DELAYED OR COMPLETED SOIL STABILIZATION MEASURES MUST BE INITIATED BY THE END OF THE NEXT BUSINESS DAY AND COMPLETED WITHIN 14 DAYS.

PROPOSED DISTURBANCE AREA = ± 3.7 ACRES

ALL RIGHTS RESERVED. COPY OR REPRODUCTION OF THIS PLAN OR ANY PORTION THEREOF, IS PROHIBITED WITHOUT THE WRITTEN PERMISSION OF THE DESIGN ENGINEER, SURVEYOR, ARCHITECT.

UNDER ARTICLE 145 (ENGINEERING), SECTION 7209 (2) OF THE NEW YORK STATE EDUCATION LAW, IT IS UNLAWFUL TO MAKE ANY ALTERATION TO ANY ITEM ON THIS DRAWING, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED SURVEYOR. IF ANY ITEM IS ALTERED, THE ALTERING ENGINEER AND/OR SURVEYOR SHALL AFFIX TO THE ITEM HIS SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS SIGNATURE AND THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

183 Main Street
New Paltz, New York 12561
T 845.255.0210 F 845.256.8110
www.willinghamengineering.com

REV	DATE	DESCRIPTION
1	10/25/19	REVISIONS PER PLANNING BOARD

EROSION AND SEDIMENT CONTROL PLAN
ROYAL ENERGY PROPERTIES, LLC

1666 ROUTE 9W

TOWN OF MARLBOROUGH, ULSTER COUNTY, NEW YORK

DRAWN BY	CHECKED BY
MLT	AVW
DATE	SCALE
09/20/19	1"=30'
PROJECT NO.	
19032	
SHEET NO.	
ESC-1	

EROSION AND SEDIMENT CONTROL NOTES - GENERAL

ALL SOIL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE IN ACCORDANCE WITH THE STANDARDS AND PRINCIPLES AS PROVIDED IN THE NEW YORK STATE STANDARDS AND SPECIFICATIONS FOR EROSION AND SEDIMENT CONTROL™ AND THE LOCAL MUNICIPALITY'S EROSION AND SEDIMENT CONTROL STANDARDS AND PRACTICES, IF SUCH A DOCUMENT EXISTS. THE INTENT OF THESE MEASURES IS TO MINIMIZE EROSION AND SEDIMENTATION DURING CONSTRUCTION, STABILIZE AND PROTECT THE SITE FROM EROSION AFTER CONSTRUCTION IS COMPLETE AND MITIGATE ANY ADVERSE IMPACTS TO STORMWATER QUALITY RESULTING FROM SEDIMENT RUNOFF CAUSED BY DEVELOPMENT ACTIVITIES.

NO SOIL STOCKPILE OR GRADED AREA SHALL REMAIN EXPOSED FOR MORE THAN 14 DAYS. THE EXPOSED AREAS OR SOIL STOCKPILE SHALL BE STABILIZED WITHIN THE 14 DAY PERIOD. STABILIZATION MEASURES TO BE USED INCLUDE TEMPORARY SEEDING, PERMANENT SEEDING, MULCHING AND STONE RIP RAP. DURING CONSTRUCTION, RUNOFF SHALL BE DIVERTED AROUND THE SITE WITH EARTH DIKES, PIPING, OR STABILIZED CHANNELS WHERE POSSIBLE. SHEET RUNOFF FROM THE SITE SHALL BE PROVIDED WITH BARRIER BARRIERS. STONE RIP RAP SHALL BE PROVIDED AT THE OUTLETS OF DRAINAGE PIPES WHERE EROSION CONTROL MEASURES ARE ENCOUNTERED.

TIMING OF CONTROL MEASURES

AS INDICATED ABOVE IN THE CONSTRUCTION SEQUENCE SCHEDULE, ALL EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED PRIOR TO COMMENCING ANY CLEARING OR GRAVING OF THE SITE. STRUCTURAL CONTROLS SHALL BE INSTALLED CONCURRENTLY WITH THE APPLICABLE ACTIVITY, AREAS WHERE CONSTRUCTION ACTIVITY TEMPORARILY CEASES FOR MORE THAN TWENTY ONE (21) DAYS WILL BE STABILIZED WITH A TEMPORARY SEED AND MULCH WITHIN FOURTEEN (14) DAYS OF THE LAST DISTURBANCE. ONCE CONSTRUCTION ACTIVITY CEASES PERMANENTLY IN AN AREA, SILT FENCES AND HAY BALE BARRIERS AND ANY EARTH DIKES WILL BE REMOVED ONCE PERMANENT MEASURES AND STABILIZATION ARE ESTABLISHED.

GENERAL INSPECTION AND MAINTENANCE PRACTICE

THESE ARE THE GENERAL INSPECTION AND MAINTENANCE PRACTICES THAT WILL BE USED TO IMPLEMENT THE PLAN DURING CONSTRUCTION:

- 1. THE FIRST PRACTICAL PORTION OF THE SITE WILL BE DISTURBED AT ONE TIME.
- 2. ALL CONTROL MEASURES WILL BE INSPECTED AT LEAST ONCE EACH WEEK.
- 3. ALL MEASURES WILL BE MAINTAINED IN GOOD WORKING ORDER. IF A REPAIR IS NECESSARY IT WILL BE INITIATED WITHIN 24 HOURS OF REPORT.
- 4. A MAINTENANCE INSPECTION REPORT WILL BE MADE AFTER EACH INSPECTION.
- 5. THE CONTRACTOR IS RESPONSIBLE FOR THE INSTALLATION AND MAINTENANCE OF ALL EROSION AND SEDIMENT CONTROL MEASURES THROUGHOUT THE COURSE OF CONSTRUCTION.

INSTALLATION NOTES

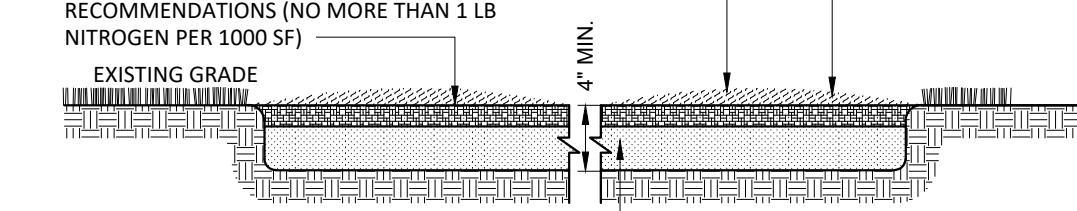
1. TEMPORARY SEEDING SHOULD BE MADE WITHIN 24 HOURS OF CONSTRUCTION OR DISTURBANCE. IF NOT, THE SOIL MUST BE SCARIFIED PRIOR TO SEEDING.

2. IN ORDER FOR MULCH TO BE EFFECTIVE IT MUST BE PLACED PRIOR TO MAJOR STORM EVENTS. IT WILL BE NECESSARY TO CLOSELY MONITOR WEATHER PREDICTIONS TO HAVE ADEQUATE WARNING OF SIGNIFICANT STORMS.

3. THE TIME PERIOD TO MULCH CAN RANGE FROM 14 TO 21 DAYS OF INACTIVITY ON AN AREA, THE LENGTH OF WHICH WILL VARY WITH THE CONDITIONS. PROFESSIONAL JUDGMENT SHALL BE USED TO EVALUATE THE INTERACTION OF SITE CONDITIONS (SOIL EROSION, SEASON OF YEAR, EXTENT OF DISTURBANCE, PROXIMITY TO SENSITIVE RESOURCES, ETC.) AND THE POTENTIAL IMPACT OF EROSION ON ADJACENT AREAS IN ORDER TO CHOOSE AN APPROPRIATE TIME RESTRICTION.

4. WHEN MULCH IS PROVIDED TO PROVIDE PROTECTION OVER WINTER (PAST THE GROWING SEASON) IT SHALL BE AT THE RATE OF 6,000 LBS OF HAY OR STRAW PER ACRE. A TACKIFIER MAY BE ADDED TO THE MULCH.

SEDIMENT BARRIERS SHALL BE INSTALLED PRIOR TO ANY SOIL DISTURBANCE OF THE CONTRIBUTING DRAINAGE AREA ABOVE THEM. (REFER TO CONSTRUCTION SEQUENCING SCHEDULE IN SWPPP REPORT FOR FURTHER INFORMATION).


330 (MIN.) POUNDS PURE LIVE SEED PER ACRE

MULCH: LAYER OF COMMON HAY OR STRAW; 2 TONS PER ACRE

FERTILIZER: COMMERCIAL 30-10-20, SLOW RELEASE APPLICATION RATE AS PER MANUFACTURER'S

RECOMMENDATIONS (NO MORE THAN 1 LB NITROGEN PER 1000 SF)

EXISTING GRADE

TOPSOIL: MIN. OF 4" DEPTH IN MOWED AREAS, 2" IN UNMOWED AREAS

SEEDING NOTES:

1. PROVIDE FRESH, CLEAN, NEW SEED COMPLYING WITH ESTABLISHED TOLERANCES FOR GERMINATION AND PURITY IN ACCORDANCE WITH THE U.S. DEPARTMENT OF AGRICULTURE RULES AND REGULATIONS UNDER THE LATEST EDITION OF THE FEDERAL SEED ACT. SEED SHALL BE MIXED BY THE DEALER AND SHALL BE DELIVERED TO THE SITE IN SEALED CONTAINERS WHICH SHALL BEAR THE DEALER'S GUARANTEE ANALYSIS.

2. SEED MIXTURES:

FOR TEMPORARY SEEDING - OR AREAS THAT WILL NOT BE MAINTAINED: RAPIDLY GERMINATING ANNUAL RYEGRASS: 30 LBS PER ACRE PERENNIAL RYEGRASS: 100 LBS PER ACRE CEREALE: 30 LBS PER ACRE ALTERNATE A (SUNNY SITE) 65% KENTUCKY BLUE GRASS BLEND: 85-114 LBS PER ACRE 20% PERENNIAL RYEGRASS: 26-35 LBS PER ACRE 15% FINE FESCUE: 19-26 LBS PER ACRE TOTAL: 130-175 LBS PER ACRE

3. APPLY SEED UNIFORMLY BY HAND, CYCLONE SEEDER, OR HYDRO SEEDER (SLURRY INCLUDING SEED AND FERTILIZER). HYDRO-SEEDING, WHICH INCLUDE MULCH, MAY BE LEFT ON SOIL SURFACE. SEEDING RATES MUST BE INCREASED 10% WHEN HYDRO-SEEDING.

4. MULCHED AREAS WITH STRAW MULCH (2000 LBS PER ACRE).

5. IRRIGATE TO FULLY SATURATE SOIL LAYER, BUT NOT TO DISLODE PLANTING SOIL.

6. SEED BETWEEN APRIL 1ST AND MAY 15TH OR AUGUST 15TH AND OCTOBER 15TH. SEEDING MAY OCCUR BETWEEN MAY 15TH AND AUGUST 15TH IF ADEQUATE IRRIGATION IS PROVIDED.

TOPSOIL APPLICATION NOTES:

1. TOPSOIL SHALL BE DISTURBED TO A UNIFORM DEPTH OVER THE AREA. IT SHALL NOT BE PLACED WHEN IT IS PARTIALLY FROZEN, MUDDY OR ON FROZEN SLOPES OVER ICE, SNOW OR STANDING WATER.

2. TOPSOIL GRADED ON SLOPES STEEPER THAN 5% SHALL BE PROMPTLY FERTILIZED, SEEDED AND PLANTED TO PREVENT TRACKING BY EQUIPMENT.

3. APPLY TOPSOIL IN THE FOLLOWING AMOUNTS FOR INTENDED USE:

MOVED LAWN: 4" INCHES UNMOVED AREA: 2-4 INCHES

4. COMPLETE ROUGH GRADING AND FINAL GRADE, ALLOWING FOR DEPTH OF TOPSOIL TO BE ADDED. SCARIFY ALL COMPACT, SLOWLY PERMEABLE, MEDIUM AND FINE TEXTURED SUBSOIL AREAS. SCARIFY AT APPROXIMATELY RIGHT ANGLES TO THE SLOPE DIRECTION IN SOIL AREAS THAT ARE STEEPER THAN 5%.

5. REMOVE REFUSE, WOODY PLANT PARTS, STONES OVER 3 INCHES IN DIAMETER, AND OTHER LITTER.

TOPSOIL MATERIAL NOTES:

THE FURNISHINGS OF NEW TOPSOIL SHALL BE OF A BETTER OR EQUAL QUALITY OF THE EXISTING ADJACENT TOPSOIL AND SHALL MEET THE FOLLOWING CRITERIA:

- TOPSOIL SHALL HAVE AT LEAST 2%, BUT NOT MORE THAN 6% BY WEIGHT OF FINE TEXTURED STABILE ORGANIC MATERIAL.
- TOPSOIL SHALL HAVE NO LESS THAN 20% FINE TEXTURED MATERIAL (PASSING THE NO. 200 SIEVE) AND NOT MORE THAN 15% CLAY.
- TOPSOIL SHALL BE RELATIVELY FREE OF STONES OVER 1" DIAMETER, THRASH, NOXIOUS WEEDS, AND WILL HAVE LESS THAN 10% GRAVEL BY VOLUME.

INSPECTION & MAINTENANCE NOTES:

1. TEMPORARY SEEDING AND PLANTING WILL BE INSPECTED FOR BARE SPOTS, WASHOUTS, AND UNHEALTHY GROWTH. 2. THE EXPOSED SURFACE OF THE TOPSOIL SHALL BE PERIODICALLY INSPECTED. AT A MINIMUM 85% OF THE SOIL SURFACE SHOULD BE COVERED PERIODICALLY. IF ANY EVIDENCE OF EROSION OR SEDIMENTATION IS APPARENT, REPAIRS SHALL BE MADE AND OTHER TEMPORARY MEASURES USED IN THE INTERIM. (MULCH, FILTER BARRIERS, CHECK DAMS, ETC.)

3. ALL MULCHES MUST BE INSPECTED PERIODICALLY, IN PARTICULAR AFTER RAINTSTORMS, TO CHECK FOR EROSION. IF LESS THAN 50% OF THE SOIL SURFACE IS COVERED BY MULCH, ADDITIONAL MULCH SHALL BE APPLIED IMMEDIATELY.

4. AERATE COMPACTED OR HEAVY USED AREAS, ANNUALLY AS SOON AS THE SOIL MOISTURE CONDITIONS PERMIT. AERATE AREA 6 TO 8 TIMES USING A SPOON HOLLOW TINE AERATION. DO NOT USE SPIKE EQUIPMENT.

5. RESEED BARE AND THIN AREAS ANNUALLY WITH ORIGINAL SPECIES.

6. SOIL SHALL MAINTAIN A pH OF 6.0-7.0.

TOPSOIL, SEED AND MULCH DETAIL

SCALE: NTS

SIZE IN INCHES (FULL SIZE - 22"x34" SHEET)

0 1 2 3

SIZE IN INCHES (HALF SIZE - 11"x17" SHEET)

0 1

0 1 2 3

SIZE IN INCHES (HALF SIZE - 11"x17" SHEET)

0 1

0 1 2 3

SIZE IN INCHES (HALF SIZE - 11"x17" SHEET)

0 1

ALL RIGHTS RESERVED. COPY OR REPRODUCTION OF THIS PLAN OR ANY PORTION THEREOF, IS PROHIBITED WITHOUT THE WRITTEN PERMISSION OF THE DESIGN ENGINEER, SURVEYOR, ARCHITECT.

UNDER ARTICLE 145 (ENGINEERING), SECTION 7209 (2) OF THE NEW YORK STATE EDUCATION LAW, IT IS UNLAWFUL TO ALTER OR ALTERED ANY ITEM ON THIS DRAWING, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED SURVEYOR. IF ANY ITEM IS ALTERED, THE ALTERING ENGINEER AND/OR SURVEYOR SHALL AFFIX TO THE ITEM HIS SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS SIGNATURE AND THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

083984

STATE OF NEW YORK
ANDREW M. CUNNINGHAM
PROFESSIONAL ENGINEER

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

183 Main Street
New Paltz, New York 12561
T 845.201.0210 F 845.256.8110
www.willinghamengineering.com

APPENDIX C

NOTICE OF INTENT (NOI)

3. Select the predominant land use for both pre and post development conditions.
SELECT ONLY ONE CHOICE FOR EACH

Pre-Development Existing Land Use

- FOREST
- PASTURE/OPEN LAND
- CULTIVATED LAND
- SINGLE FAMILY HOME
- SINGLE FAMILY SUBDIVISION
- TOWN HOME RESIDENTIAL
- MULTIFAMILY RESIDENTIAL
- INSTITUTIONAL/SCHOOL
- INDUSTRIAL
- COMMERCIAL
- ROAD/HIGHWAY
- RECREATIONAL/SPORTS FIELD
- BIKE PATH/TRAIL
- LINEAR UTILITY
- PARKING LOT
- OTHER

Post-Development Future Land Use

*Note: for gas well drilling, non-high volume hydraulic fractured wells only

4. In accordance with the larger common plan of development or sale, enter the total project site area; the total area to be disturbed; existing impervious area to be disturbed (for redevelopment activities); and the future impervious area constructed within the disturbed area. (Round to the nearest tenth of an acre.)

Total Site Area

Total Area To
Be Disturbed

**Existing Impervious
Area To Be Disturbed**

Future Impervious Area Within Disturbed Area

5. Do you plan to disturb more than 5 acres of soil at any one time? Yes No

6. Indicate the percentage of each Hydrologic Soil Group (HSG) at the site.

A %

B %

C %

D %

7. Is this a phased project?

8. Enter the planned start and end dates of the disturbance activities.

Start Date / / **End Date** / /

9. Identify the nearest surface waterbody(ies) to which construction site runoff will discharge.

Name _____

9a. Type of waterbody identified in Question 9?

- Wetland / State Jurisdiction On Site (Answer 9b)
- Wetland / State Jurisdiction Off Site
- Wetland / Federal Jurisdiction On Site (Answer 9b)
- Wetland / Federal Jurisdiction Off Site
- Stream / Creek On Site
- Stream / Creek Off Site
- River On Site
- River Off Site
- Lake On Site
- Lake Off Site
- Other Type On Site
- Other Type Off Site

9b. How was the wetland identified?

- Regulatory Map
- Delineated by Consultant
- Delineated by Army Corps of Engineers
- Other (identify)

10. Has the surface waterbody(ies) in question 9 been identified as a 303(d) segment in Appendix E of GP-0-15-002?

Yes No

11. Is this project located in one of the Watersheds identified in Appendix C of GP-0-15-002?

Yes No

12. Is the project located in one of the watershed areas associated with AA and AA-S classified waters?

Yes No

13. Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an F or E on the USDA Soil Survey?

Yes No

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent area?

15. Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)? Yes No Unknown

16. What is the name of the municipality/entity that owns the separate storm sewer system?

[REDACTED]

[REDACTED]

17. Does any runoff from the site enter a sewer classified as a Combined Sewer? Yes No Unknown

18. Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? Yes No

19. Is this property owned by a state authority, state agency, federal government or local government? Yes No

20. Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup Agreement, etc.) Yes No

21. Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS Standards and Specifications for Erosion and Sediment Control (aka Blue Book)? Yes No

22. Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and Quantity Control practices/techniques)? Yes No

If No, skip questions 23 and 27-39.

23. Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS Stormwater Management Design Manual? Yes No

25. Has a construction sequence schedule for the planned management practices been prepared? Yes No

26. Select **all** of the erosion and sediment control practices that will be employed on the project site:

Temporary Structural

- Check Dams
- Construction Road Stabilization
- Dust Control
- Earth Dike
- Level Spreader
- Perimeter Dike/Swale
- Pipe Slope Drain
- Portable Sediment Tank
- Rock Dam
- Sediment Basin
- Sediment Traps
- Silt Fence
- Stabilized Construction Entrance
- Storm Drain Inlet Protection
- Straw/Hay Bale Dike
- Temporary Access Waterway Crossing
- Temporary Stormdrain Diversion
- Temporary Swale
- Turbidity Curtain
- Water bars

Vegetative Measures

- Brush Matting
- Dune Stabilization
- Grassed Waterway
- Mulching
- Protecting Vegetation
- Recreation Area Improvement
- Seeding
- Sodding
- Straw/Hay Bale Dike
- Streambank Protection
- Temporary Swale
- Topsoiling
- Vegetating Waterways

Permanent Structural

- Debris Basin
- Diversion
- Grade Stabilization Structure
- Land Grading
- Lined Waterway (Rock)
- Paved Channel (Concrete)
- Paved Flume
- Retaining Wall
- Riprap Slope Protection
- Rock Outlet Protection
- Streambank Protection

Other

Post-construction Stormwater Management Practice (SMP) Requirements

Important: Completion of Questions 27-39 is not required if response to Question 22 is No.

27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.

- Preservation of Undisturbed Areas**
- Preservation of Buffers**
- Reduction of Clearing and Grading**
- Locating Development in Less Sensitive Areas**
- Roadway Reduction**
- Sidewalk Reduction**
- Driveway Reduction**
- Cul-de-sac Reduction**
- Building Footprint Reduction**
- Parking Reduction**

27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).

- All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
- Compacted areas were considered as impervious cover when calculating the **WQv Required**, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.

28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Total WQv Required

--	--	--

.

--	--	--

 acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

Table 1 - Runoff Reduction (RR) Techniques
and Standard Stormwater Management
Practices (SMPs)

	Total Contributing Area (acres)	Total Contributing Impervious Area (acres)
RR Techniques (Area Reduction)		
<input type="radio"/> Conservation of Natural Areas (RR-1) ...	_____	_____ and/or _____
<input type="radio"/> Sheetflow to Riparian Buffers/Filters Strips (RR-2)	_____	_____ and/or _____
<input type="radio"/> Tree Planting/Tree Pit (RR-3)	_____	_____ and/or _____
<input type="radio"/> Disconnection of Rooftop Runoff (RR-4)...	_____	_____ and/or _____
RR Techniques (Volume Reduction)		
<input type="radio"/> Vegetated Swale (RR-5)	_____	_____
<input type="radio"/> Rain Garden (RR-6)	_____	_____
<input type="radio"/> Stormwater Planter (RR-7)	_____	_____
<input type="radio"/> Rain Barrel/Cistern (RR-8)	_____	_____
<input type="radio"/> Porous Pavement (RR-9)	_____	_____
<input type="radio"/> Green Roof (RR-10)	_____	_____
Standard SMPs with RRv Capacity		
<input type="radio"/> Infiltration Trench (I-1)	_____	_____
<input type="radio"/> Infiltration Basin (I-2)	_____	_____
<input type="radio"/> Dry Well (I-3)	_____	_____
<input type="radio"/> Underground Infiltration System (I-4)	_____	_____
<input type="radio"/> Bioretention (F-5)	_____	_____
<input type="radio"/> Dry Swale (O-1)	_____	_____
Standard SMPs		
<input type="radio"/> Micropool Extended Detention (P-1)	_____	_____
<input type="radio"/> Wet Pond (P-2)	_____	_____
<input type="radio"/> Wet Extended Detention (P-3)	_____	_____
<input type="radio"/> Multiple Pond System (P-4)	_____	_____
<input type="radio"/> Pocket Pond (P-5)	_____	_____
<input type="radio"/> Surface Sand Filter (F-1)	_____	_____
<input type="radio"/> Underground Sand Filter (F-2)	_____	_____
<input type="radio"/> Perimeter Sand Filter (F-3)	_____	_____
<input type="radio"/> Organic Filter (F-4)	_____	_____
<input type="radio"/> Shallow Wetland (W-1)	_____	_____
<input type="radio"/> Extended Detention Wetland (W-2)	_____	_____
<input type="radio"/> Pond/Wetland System (W-3)	_____	_____
<input type="radio"/> Pocket Wetland (W-4)	_____	_____
<input type="radio"/> Wet Swale (O-2)	_____	_____

**Table 2 - Alternative SMPs
(DO NOT INCLUDE PRACTICES BEING
USED FOR PRETREATMENT ONLY)**

<u>Alternative SMP</u>	<u>Total Contributing Impervious Area(acres)</u>
<input type="radio"/> Hydrodynamic	
<input type="radio"/> Wet Vault	
<input type="radio"/> Media Filter	
<input type="radio"/> Other

Provide the name and manufacturer of the Alternative SMPS (i.e. proprietary practice(s)) being used for WQV treatment.

Name _____

Manufacturer

Note: Redevelopment projects which do not use RR techniques, shall use questions 28, 29, 33 and 33a to provide SMPs used, total WQv required and total WQv provided for the project.

30. Indicate the Total RRV provided by the RR techniques (Area/Volume Reduction) and Standard SMPs with RRV capacity identified in question 29.

Total RRv provided

· acre-feet

31. Is the Total RRV provided (#30) greater than or equal to the total WQv required (#28).

If Yes, go to question 36.
If No, go to question 32.

Yes No

32. Provide the Minimum RRV required based on HSG.
[Minimum RRV Required = $(P)(0.95)(A_i)/12$, $A_i = (S)(A_{ic})$]

Minimum RRv Required

32a. Is the Total RRv provided (#30) greater than or equal to the Minimum RRv Required (#32)?

Yes No

If Yes, go to question 33.

Note: Use the space provided in question #39 to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). A detailed evaluation of the specific site limitations and justification for not reducing 100% of the WQv required (#28) must also be included in the SWPPP.

If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv (=Total WQv Required in 28 - Total RRV Provided in 30).

Also, provide in Table 1 and 2 the total impervious area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRV Capacity identified in question 29.

WQv Provided

--	--	--

.

--	--	--

 acre-feet

Note: For the standard SMPs with RRV capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRV provided by the practice. (See Table 3.5 in Design Manual)

34. Provide the sum of the Total RRV provided (#30) and the WQv provided (#33a).

--	--	--

.

--	--	--

35. Is the sum of the RRV provided (#30) and the WQv provided (#33a) greater than or equal to the total WQv required (#28)? Yes No

If Yes, go to question 36.

If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria.

36. Provide the total Channel Protection Storage Volume (CPv) required and provided or select waiver (36a), if applicable.

CPv Required

--	--	--

.

--	--	--

 acre-feet

CPv Provided

--	--	--

.

--	--	--

 acre-feet

36a. The need to provide channel protection has been waived because:

- Site discharges directly to tidal waters or a fifth order or larger stream.
- Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development

--	--	--

.

--	--	--

 CFS

Post-development

--	--	--

.

--	--	--

 CFS

Total Extreme Flood Control Criteria (Qf)

Pre-Development

--	--	--

.

--	--	--

 CFS

Post-development

--	--	--

.

--	--	--

 CFS

37a. The need to meet the Qp and Qf criteria has been waived because:

- Site discharges directly to tidal waters or a fifth order or larger stream.
- Downstream analysis reveals that the Q_p and Q_f controls are not required

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been developed?

Yes No

If Yes, Identify the entity responsible for the long term Operation and Maintenance

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required (#28). (See question 32a)
This space can also be used for other pertinent project information.

40. Identify other DEC permits, existing and new, that are required for this project/facility.

- Air Pollution Control
- Coastal Erosion
- Hazardous Waste
- Long Island Wells
- Mined Land Reclamation
- Solid Waste
- Navigable Waters Protection / Article 15
- Water Quality Certificate
- Dam Safety
- Water Supply
- Freshwater Wetlands/Article 24
- Tidal Wetlands
- Wild, Scenic and Recreational Rivers
- Stream Bed or Bank Protection / Article 15
- Endangered or Threatened Species(Incidental Take Permit)
- Individual SPDES
- SPDES Multi-Sector GP
- Other
- None

41. Does this project require a US Army Corps of Engineers Wetland Permit? Yes No

If Yes, Indicate Size of Impact. .

42. Is this project subject to the requirements of a regulated, traditional land use control MS4? Yes No
(If No, skip question 43)

43. Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI? Yes No

44. If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned.

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

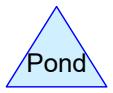
Print First Name

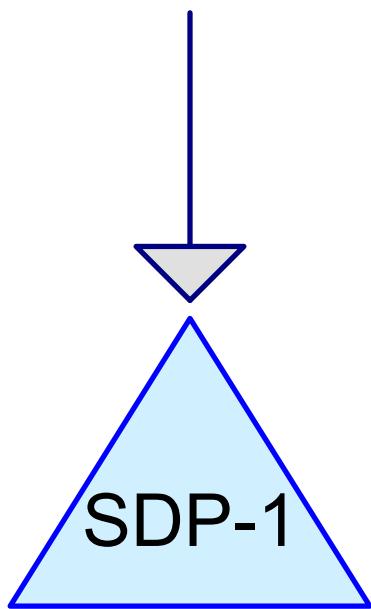
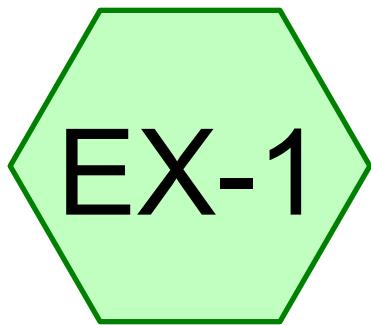
| | | | | | | | | | | | | |

MI

1

Print Last Name



Owner/Operator Signature

Date

APPENDIX G

HYDROCAD ANALYSIS

Routing Diagram for PRE

Prepared by {enter your company name here}, Printed 9/19/2019
HydroCAD® 10.00-24 s/n 08522 © 2018 HydroCAD Software Solutions LLC

PRE

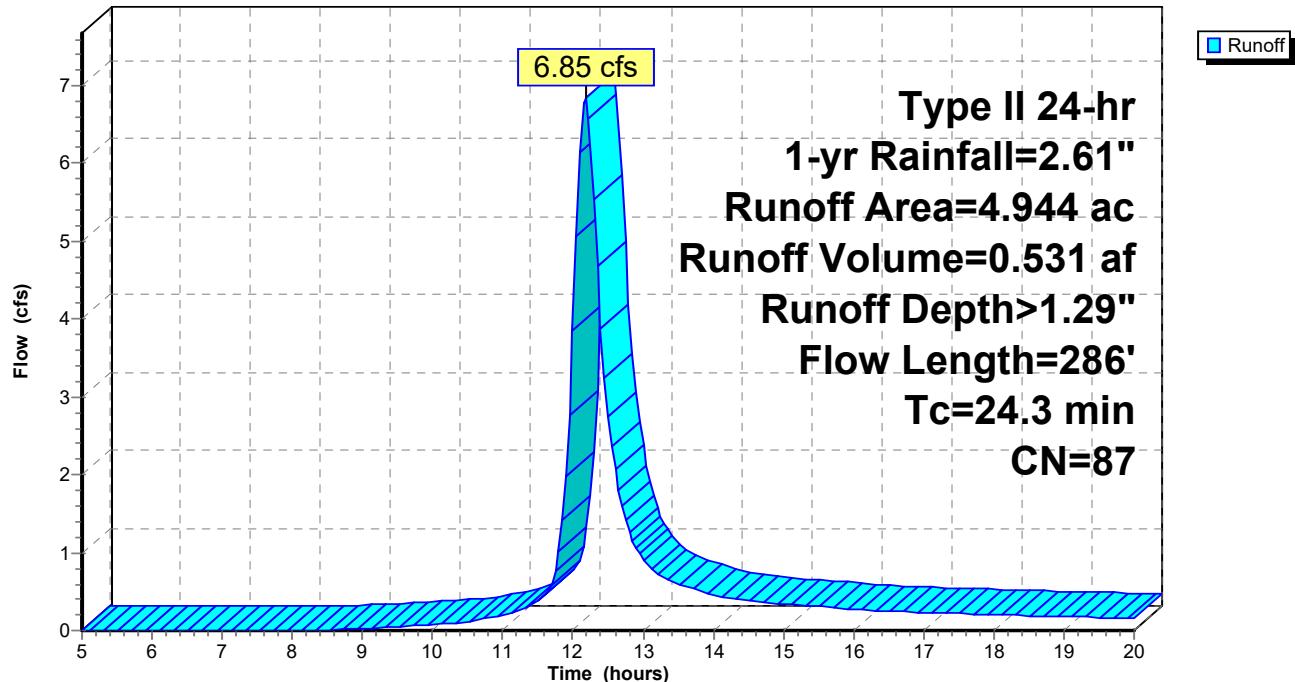
Prepared by {enter your company name here}
HydroCAD® 10.00-24 s/n 08522 © 2018 HydroCAD Software Solutions LLC

Printed 9/19/2019

Page 2

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.867	74	>75% Grass cover, Good, HSG C (EX-1)
0.118	98	Concrete, HSG C (EX-1)
0.087	96	Gravel surface, HSG C (EX-1)
1.105	98	Paved parking, HSG C (EX-1)
1.360	98	Roofs, HSG C (EX-1)
0.407	70	Woods, Good, HSG C (EX-1)
4.944	87	TOTAL AREA


Summary for Subcatchment EX-1:

Runoff = 6.85 cfs @ 12.18 hrs, Volume= 0.531 af, Depth> 1.29"

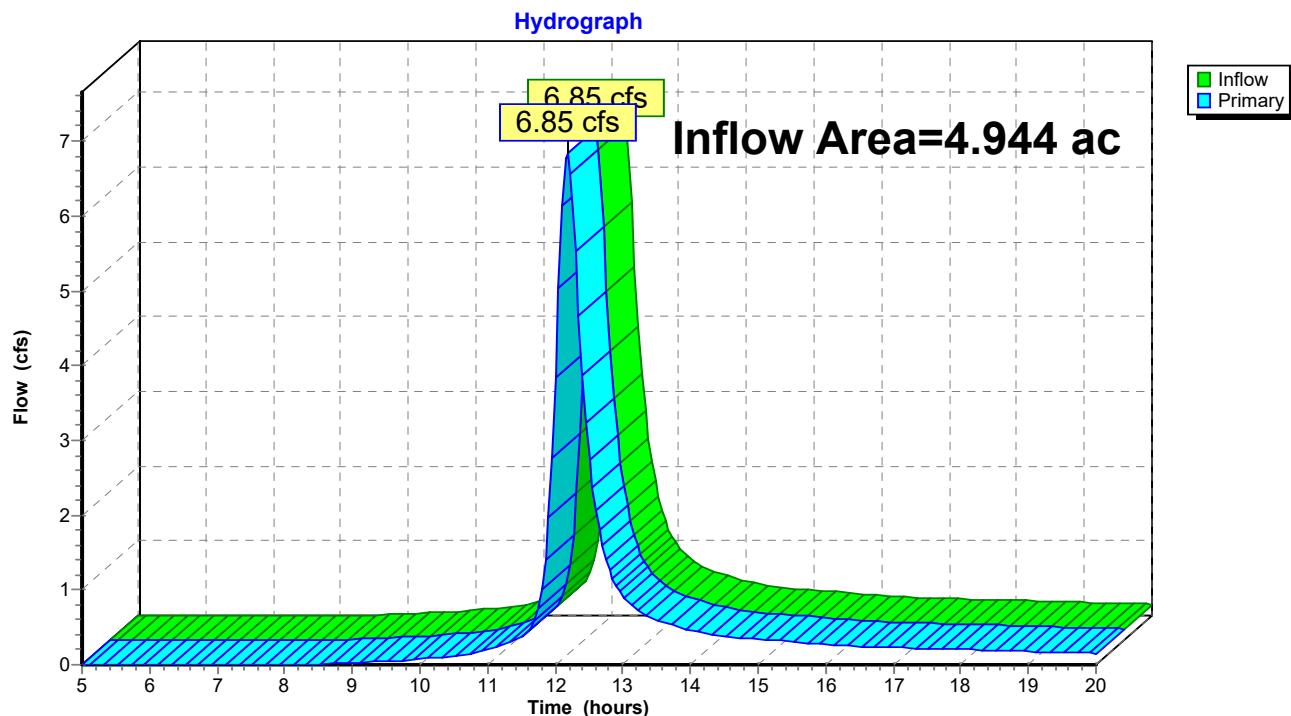
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type II 24-hr 1-yr Rainfall=2.61"

Area (ac)	CN	Description
1.105	98	Paved parking, HSG C
1.360	98	Roofs, HSG C
*	0.118	Concrete, HSG C
0.407	70	Woods, Good, HSG C
0.087	96	Gravel surface, HSG C
1.867	74	>75% Grass cover, Good, HSG C
4.944	87	Weighted Average
2.361		47.75% Pervious Area
2.583		52.25% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
22.7	150	0.0400	0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.15"
0.5	35	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.6	45	0.0300	1.21		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.5	56	0.1200	1.73		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
24.3	286	Total			

Subcatchment EX-1:**Hydrograph**

Summary for Pond SDP-1:

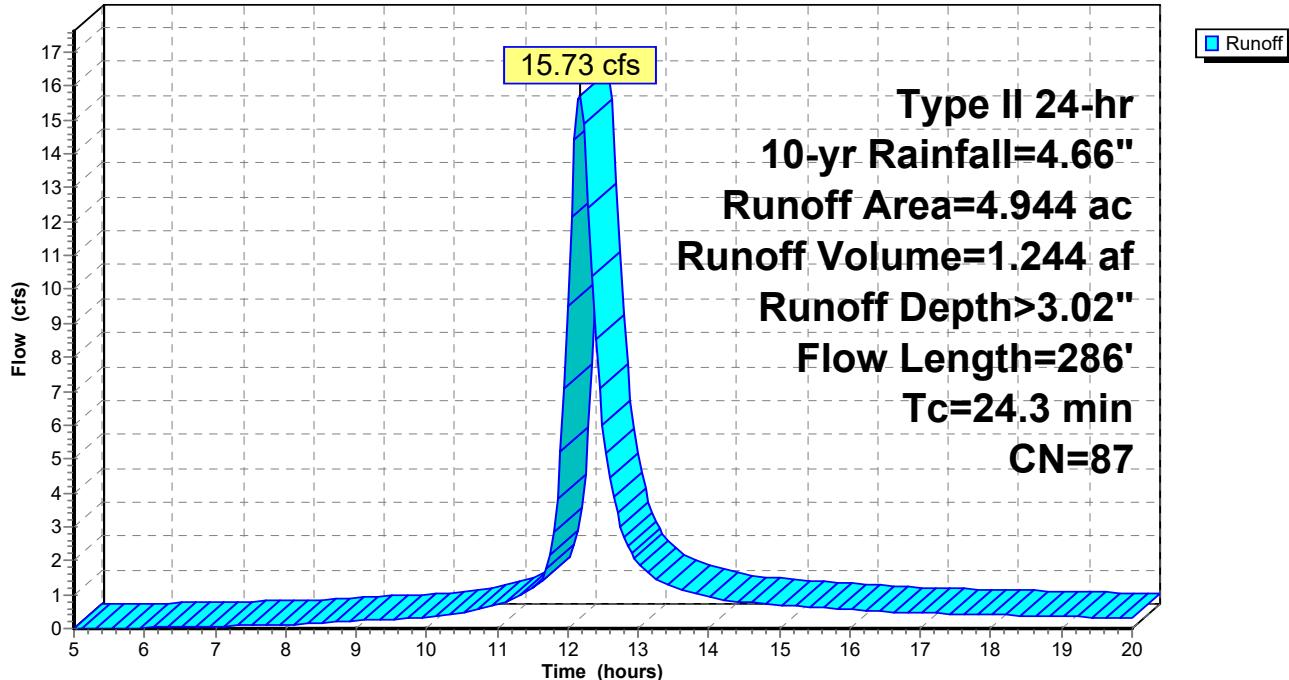

Inflow Area = 4.944 ac, 52.25% Impervious, Inflow Depth > 1.29" for 1-yr event

Inflow = 6.85 cfs @ 12.18 hrs, Volume= 0.531 af

Primary = 6.85 cfs @ 12.18 hrs, Volume= 0.531 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SDP-1:

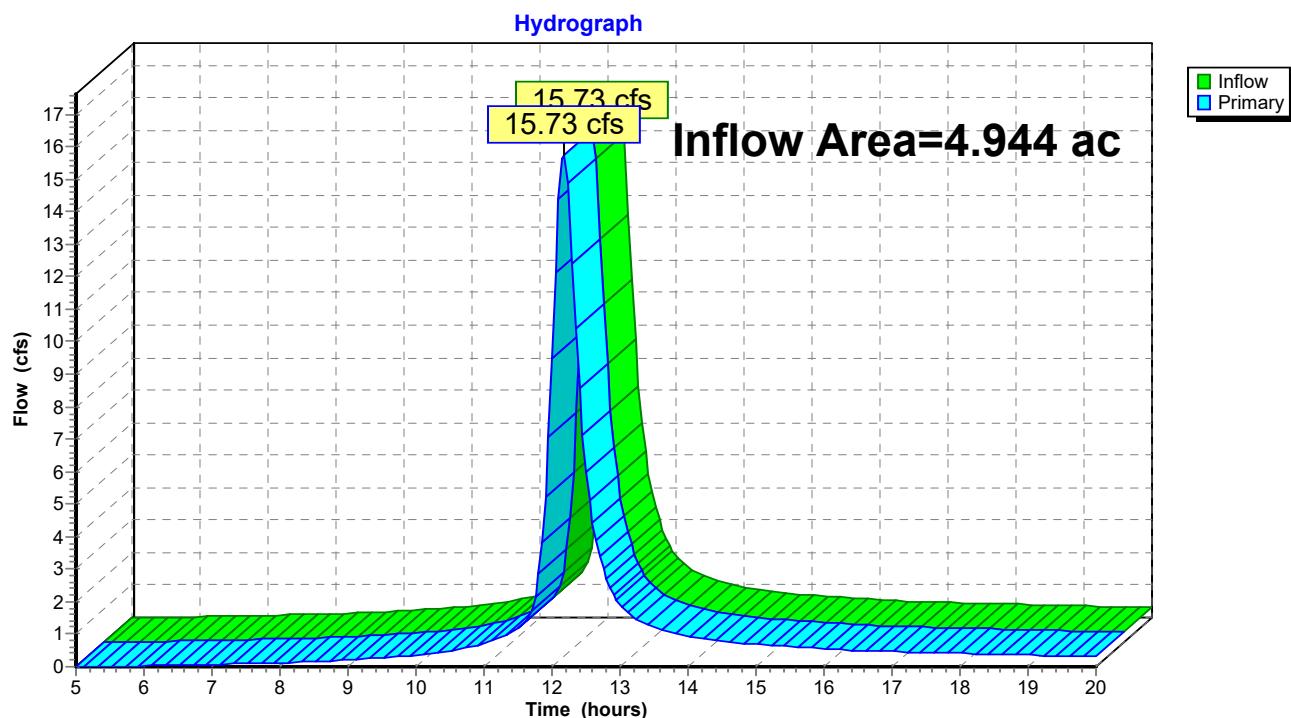

Summary for Subcatchment EX-1:

Runoff = 15.73 cfs @ 12.17 hrs, Volume= 1.244 af, Depth> 3.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type II 24-hr 10-yr Rainfall=4.66"

Area (ac)	CN	Description
1.105	98	Paved parking, HSG C
1.360	98	Roofs, HSG C
*	0.118	Concrete, HSG C
0.407	70	Woods, Good, HSG C
0.087	96	Gravel surface, HSG C
1.867	74	>75% Grass cover, Good, HSG C
4.944	87	Weighted Average
2.361		47.75% Pervious Area
2.583		52.25% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
22.7	150	0.0400	0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.15"
0.5	35	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.6	45	0.0300	1.21		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.5	56	0.1200	1.73		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
24.3	286	Total			

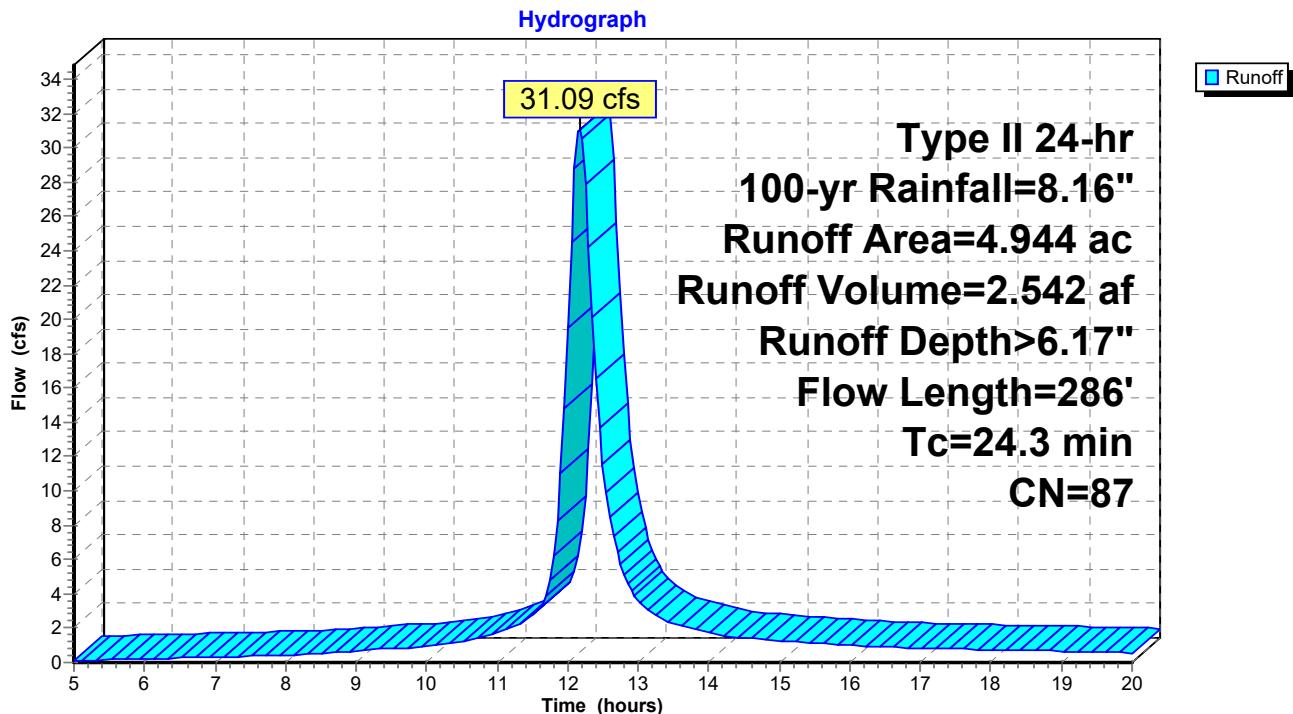

Subcatchment EX-1:**Hydrograph**

Summary for Pond SDP-1:

Inflow Area = 4.944 ac, 52.25% Impervious, Inflow Depth > 3.02" for 10-yr event
Inflow = 15.73 cfs @ 12.17 hrs, Volume= 1.244 af
Primary = 15.73 cfs @ 12.17 hrs, Volume= 1.244 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SDP-1:

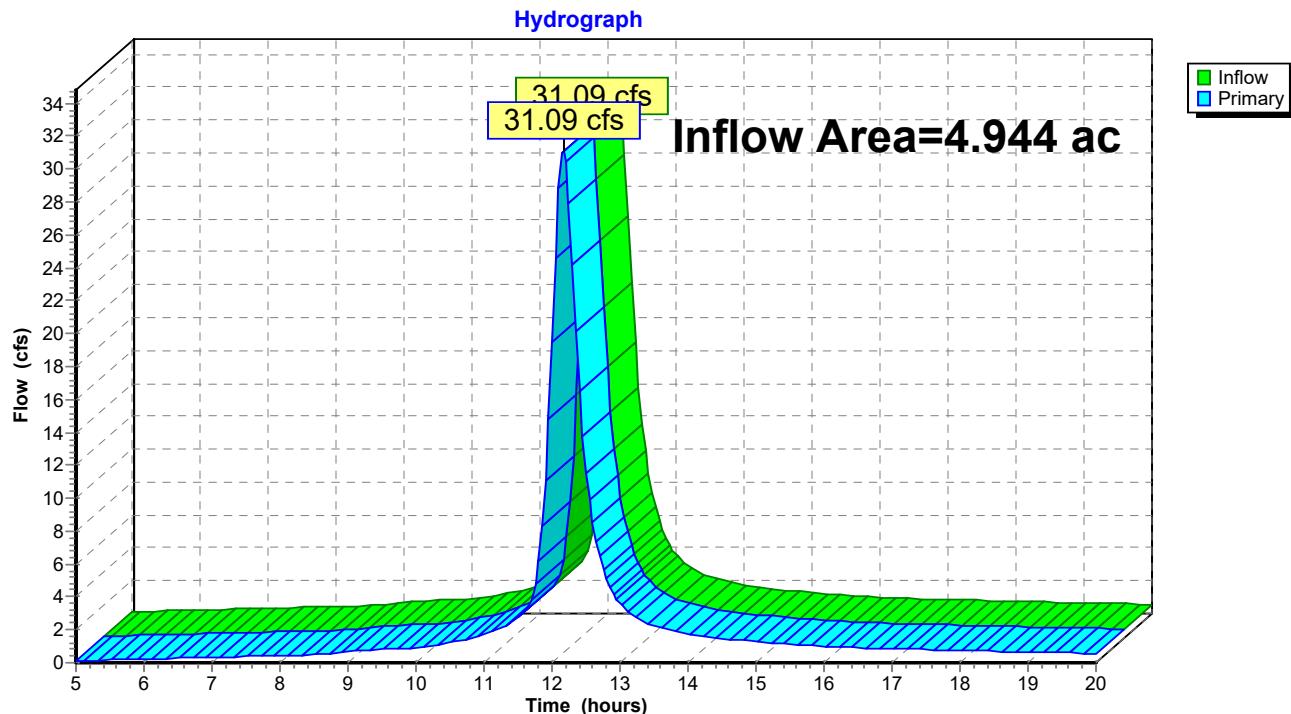

Summary for Subcatchment EX-1:

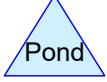
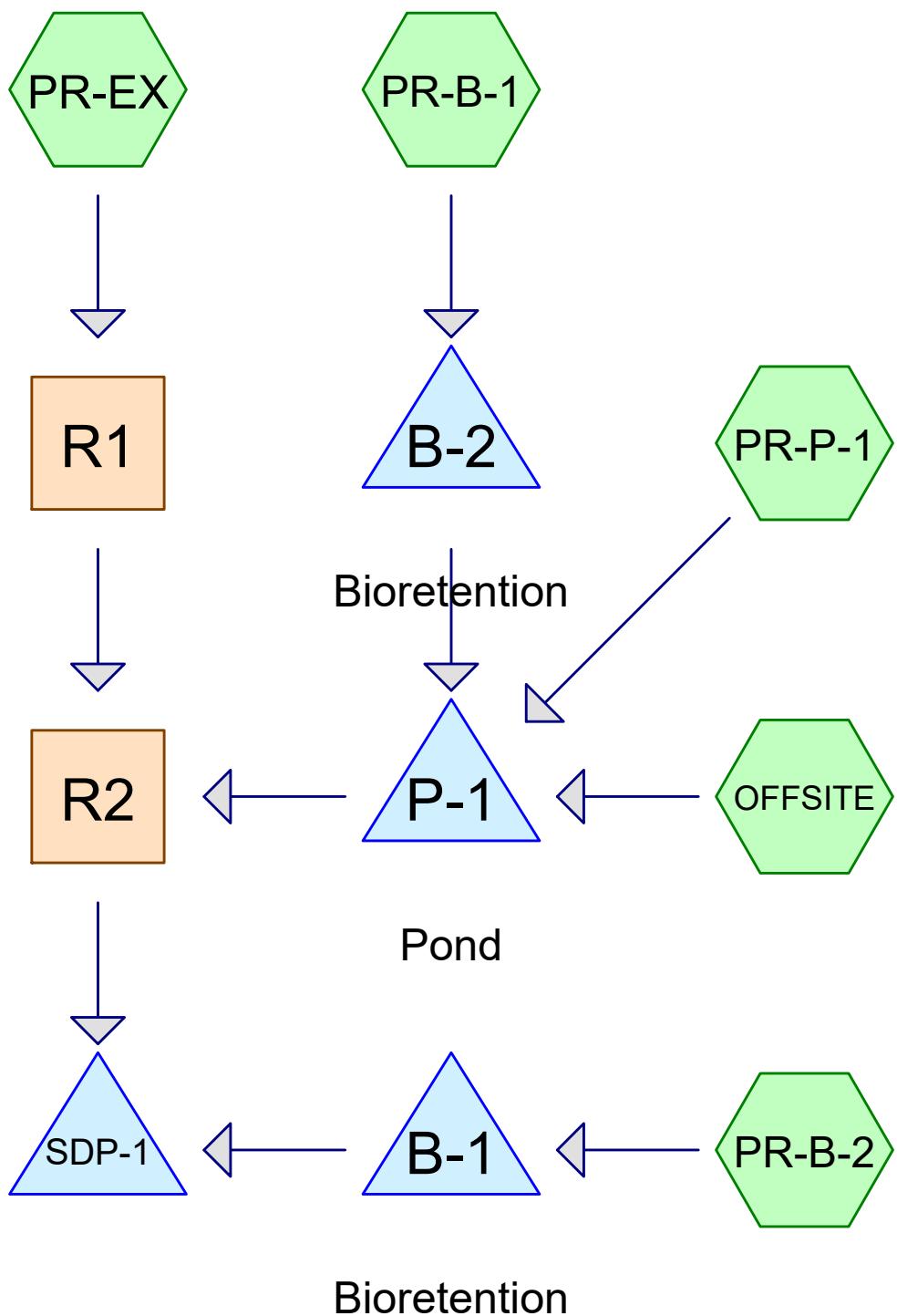
Runoff = 31.09 cfs @ 12.17 hrs, Volume= 2.542 af, Depth> 6.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type II 24-hr 100-yr Rainfall=8.16"

Area (ac)	CN	Description
1.105	98	Paved parking, HSG C
1.360	98	Roofs, HSG C
*	0.118	Concrete, HSG C
0.407	70	Woods, Good, HSG C
0.087	96	Gravel surface, HSG C
1.867	74	>75% Grass cover, Good, HSG C
4.944	87	Weighted Average
2.361		47.75% Pervious Area
2.583		52.25% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
22.7	150	0.0400	0.11		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.15"
0.5	35	0.0500	1.12		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
0.6	45	0.0300	1.21		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.5	56	0.1200	1.73		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
24.3	286	Total			


Subcatchment EX-1:



Summary for Pond SDP-1:

Inflow Area = 4.944 ac, 52.25% Impervious, Inflow Depth > 6.17" for 100-yr event
Inflow = 31.09 cfs @ 12.17 hrs, Volume= 2.542 af
Primary = 31.09 cfs @ 12.17 hrs, Volume= 2.542 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SDP-1:

Routing Diagram for POST

Prepared by {enter your company name here}, Printed 10/25/2019
 HydroCAD® 10.00-24 s/n 08522 © 2018 HydroCAD Software Solutions LLC

POST

Prepared by {enter your company name here}

HydroCAD® 10.00-24 s/n 08522 © 2018 HydroCAD Software Solutions LLC

Printed 10/25/2019

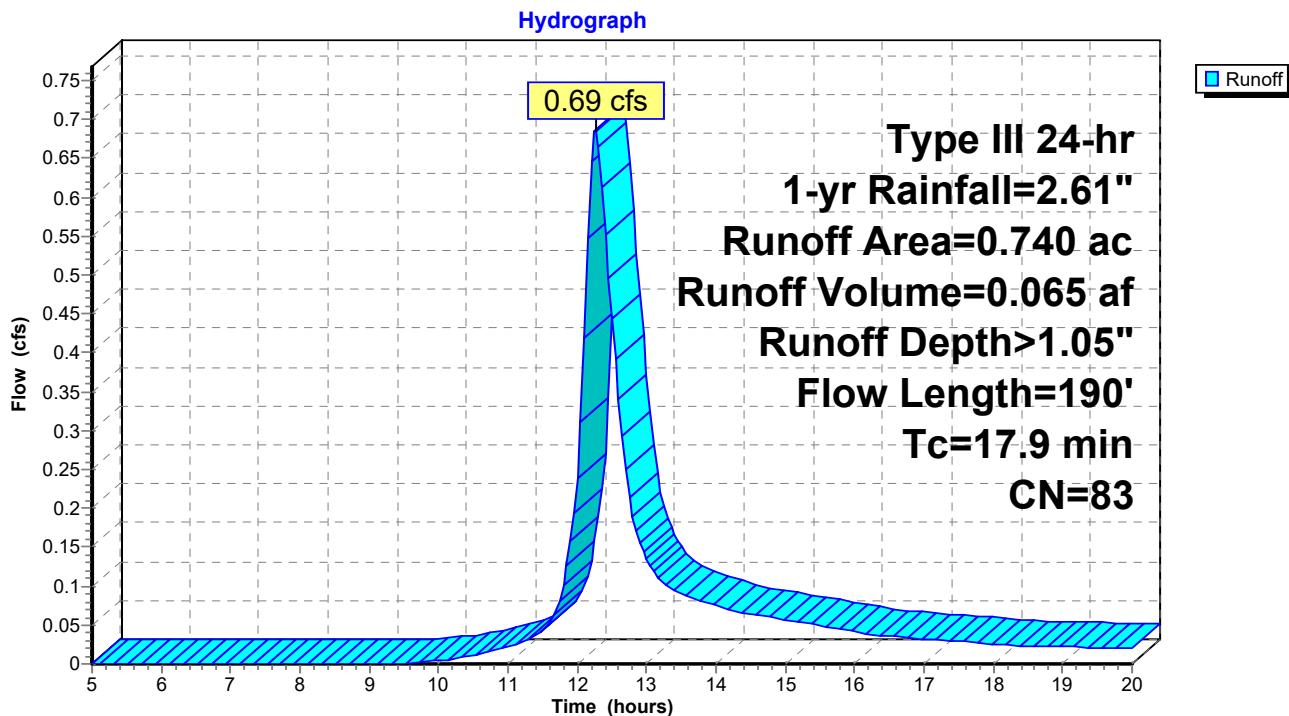
Page 2

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
1.626	74	>75% Grass cover, Good, HSG C (OFFSITE, PR-B-2, PR-EX, PR-P-1)
0.071	98	Concrete, HSG C (PR-EX)
0.236	96	Gravel surface, HSG C (PR-EX, PR-P-1)
1.331	98	Paved parking, HSG C (OFFSITE, PR-EX, PR-P-1)
2.211	98	Roofs, HSG C (PR-B-1, PR-B-2, PR-EX, PR-P-1)
0.084	70	Woods, Good, HSG C (PR-EX)
5.559	90	TOTAL AREA

Summary for Subcatchment OFFSITE:

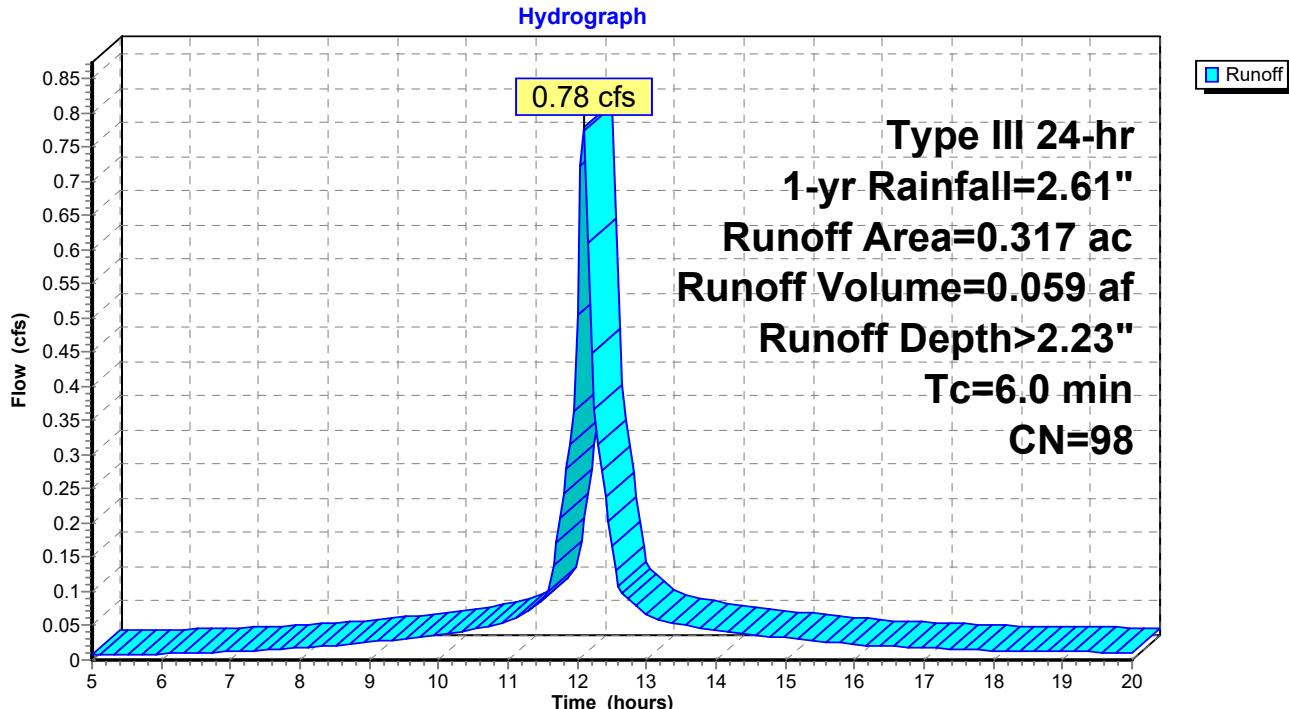
Runoff = 0.69 cfs @ 12.26 hrs, Volume= 0.065 af, Depth> 1.05"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 1-yr Rainfall=2.61"

Area (ac)	CN	Description
0.281	98	Paved parking, HSG C
0.459	74	>75% Grass cover, Good, HSG C
0.740	83	Weighted Average
0.459		62.03% Pervious Area
0.281		37.97% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.9	150	0.0300	0.15		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
1.0	40	0.0100	0.70		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
17.9	190	Total			

Subcatchment OFFSITE:


Summary for Subcatchment PR-B-1:

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 0.059 af, Depth> 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type III 24-hr 1-yr Rainfall=2.61"

Area (ac)	CN	Description
0.317	98	Roofs, HSG C
0.317		100.00% Impervious Area

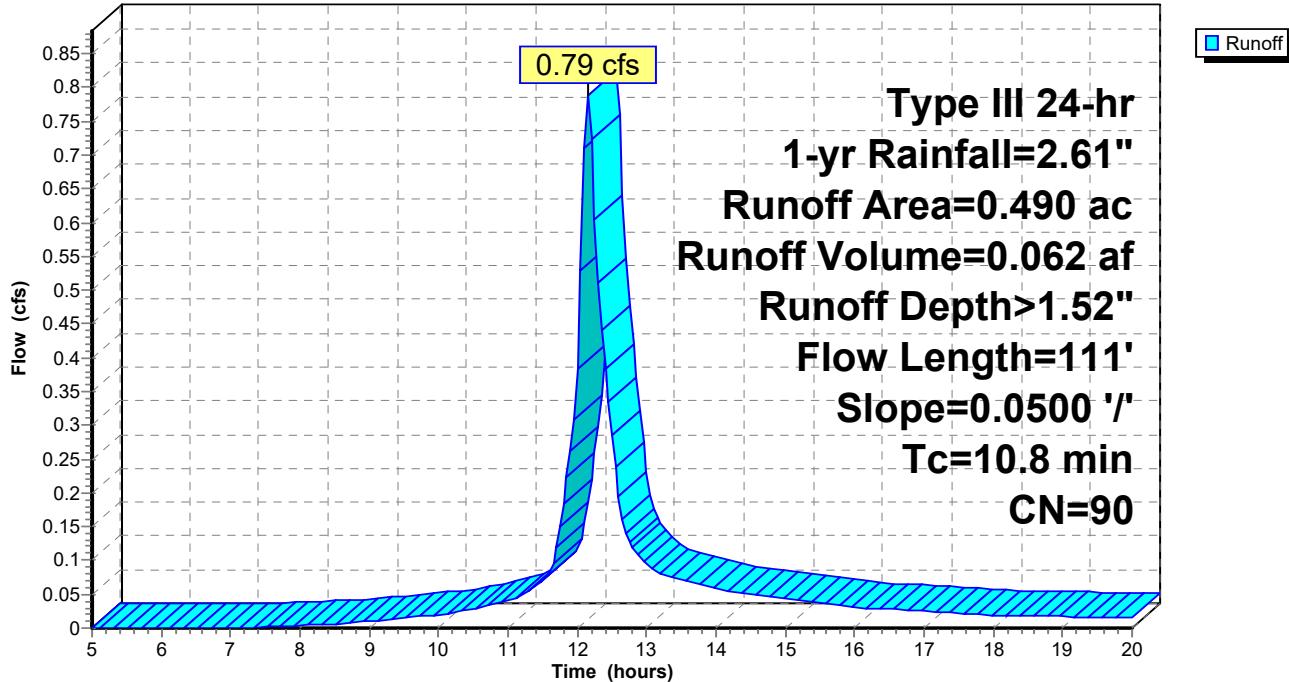
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	Direct Entry,				

Subcatchment PR-B-1:

Summary for Subcatchment PR-B-2:

Runoff = 0.79 cfs @ 12.15 hrs, Volume= 0.062 af, Depth> 1.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 1-yr Rainfall=2.61"


Area (ac)	CN	Description
0.158	74	>75% Grass cover, Good, HSG C
0.332	98	Roofs, HSG C

0.490	90	Weighted Average
0.158		32.24% Pervious Area
0.332		67.76% Impervious Area

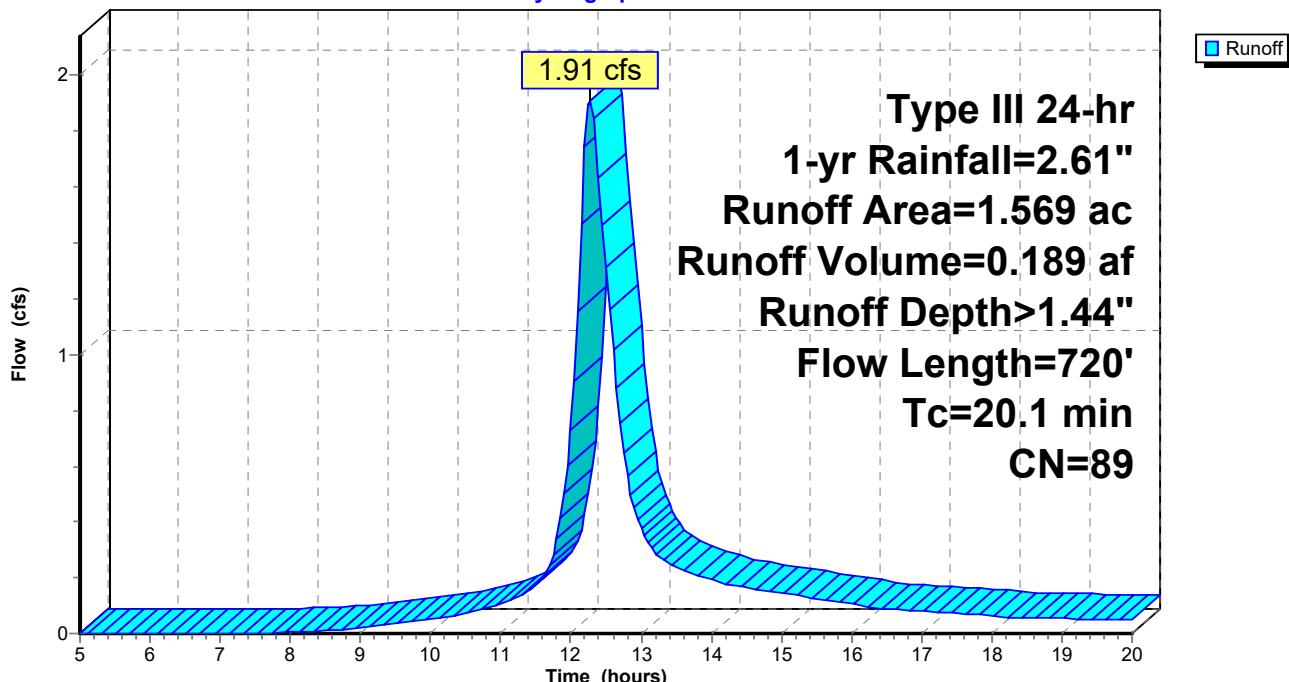
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.8	111	0.0500	0.17		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"

Subcatchment PR-B-2:

Hydrograph

Summary for Subcatchment PR-EX:

Runoff = 1.91 cfs @ 12.28 hrs, Volume= 0.189 af, Depth> 1.44"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 1-yr Rainfall=2.61"

Area (ac)	CN	Description
0.261	98	Paved parking, HSG C
0.557	98	Roofs, HSG C
*	0.071	Concrete, HSG C
0.084	70	Woods, Good, HSG C
0.087	96	Gravel surface, HSG C
0.509	74	>75% Grass cover, Good, HSG C
1.569	89	Weighted Average
0.680		43.34% Pervious Area
0.889		56.66% Impervious Area

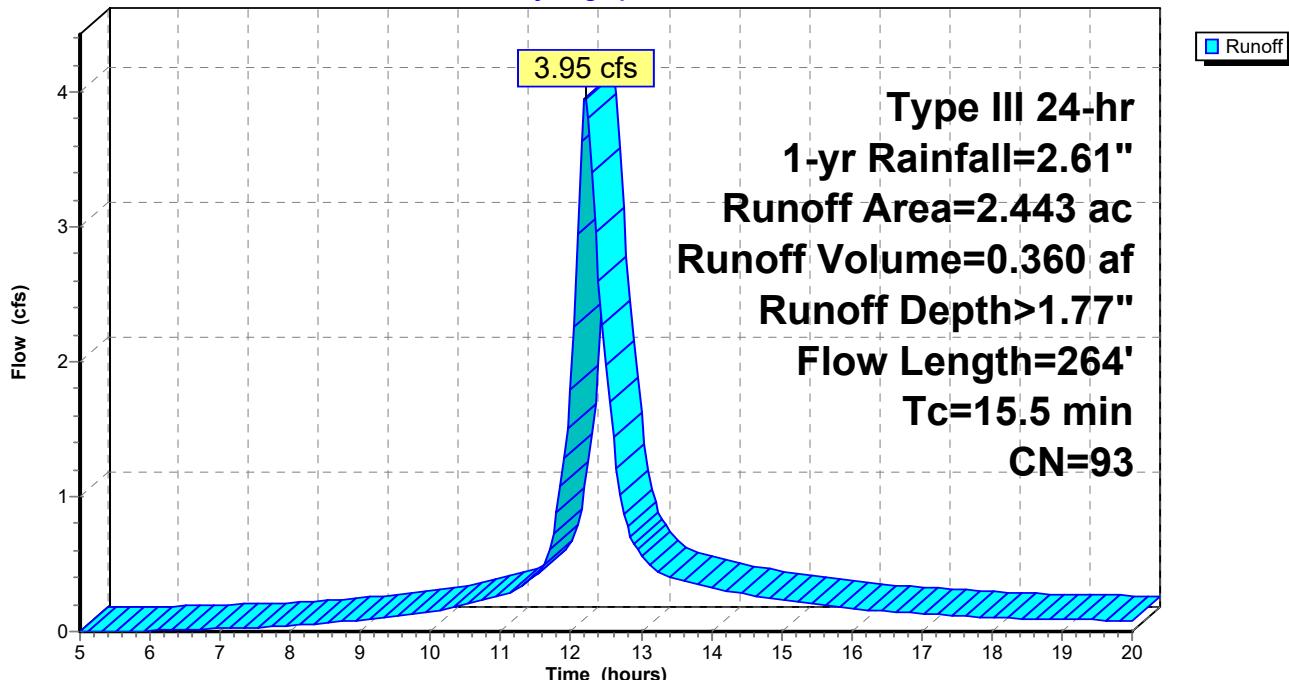
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.5	150	0.0240	0.14		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
1.6	570	0.0066	5.85	18.38	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013 Corrugated PE, smooth interior
20.1	720	Total			

Subcatchment PR-EX:

Hydrograph

Summary for Subcatchment PR-P-1:

Runoff = 3.95 cfs @ 12.21 hrs, Volume= 0.360 af, Depth> 1.77"

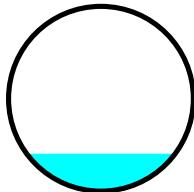

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 1-yr Rainfall=2.61"

Area (ac)	CN	Description
1.005	98	Roofs, HSG C
0.149	96	Gravel surface, HSG C
0.789	98	Paved parking, HSG C
0.500	74	>75% Grass cover, Good, HSG C
2.443	93	Weighted Average
0.649		26.57% Pervious Area
1.794		73.43% Impervious Area

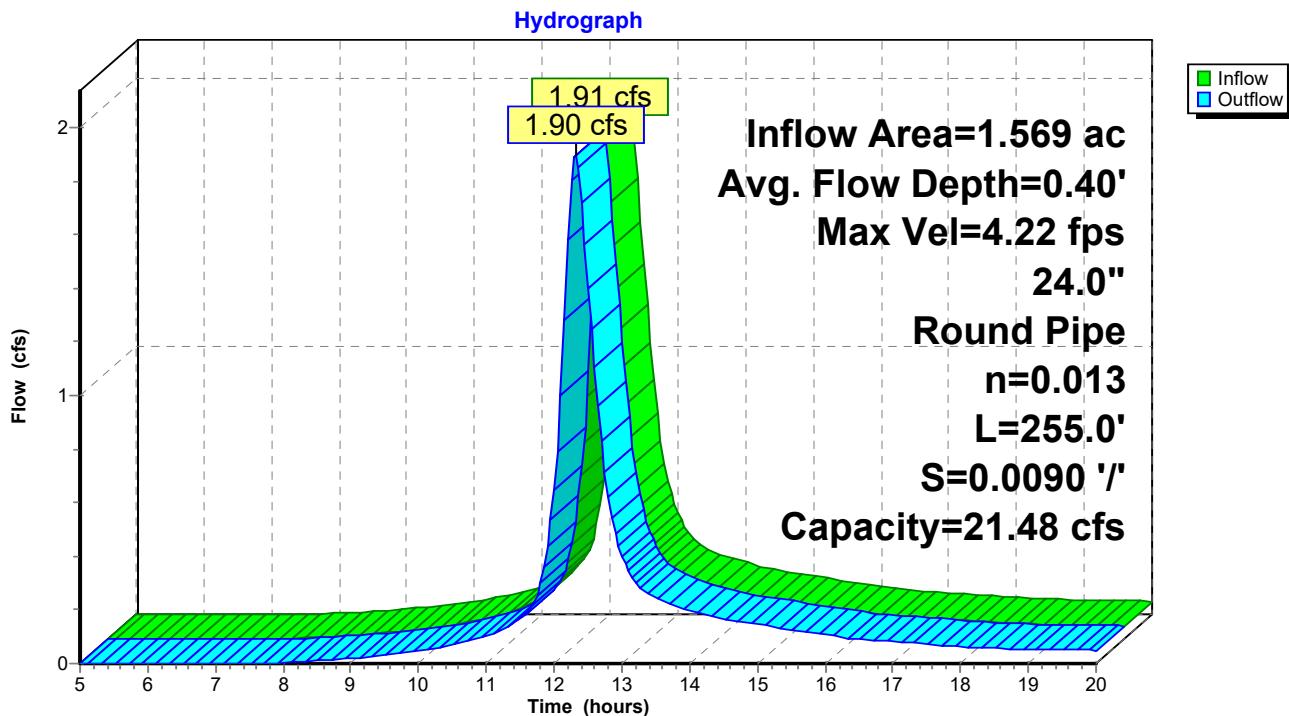
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.4	100	0.0200	0.12		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
0.9	126	0.0200	2.28		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
0.2	38	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior
15.5	264	Total			

Subcatchment PR-P-1:

Hydrograph


Summary for Reach R1:

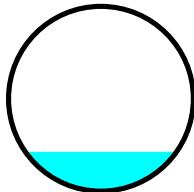
Inflow Area = 1.569 ac, 56.66% Impervious, Inflow Depth > 1.44" for 1-yr event
 Inflow = 1.91 cfs @ 12.28 hrs, Volume= 0.189 af
 Outflow = 1.90 cfs @ 12.31 hrs, Volume= 0.189 af, Atten= 1%, Lag= 1.9 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Max. Velocity= 4.22 fps, Min. Travel Time= 1.0 min
 Avg. Velocity = 1.76 fps, Avg. Travel Time= 2.4 min

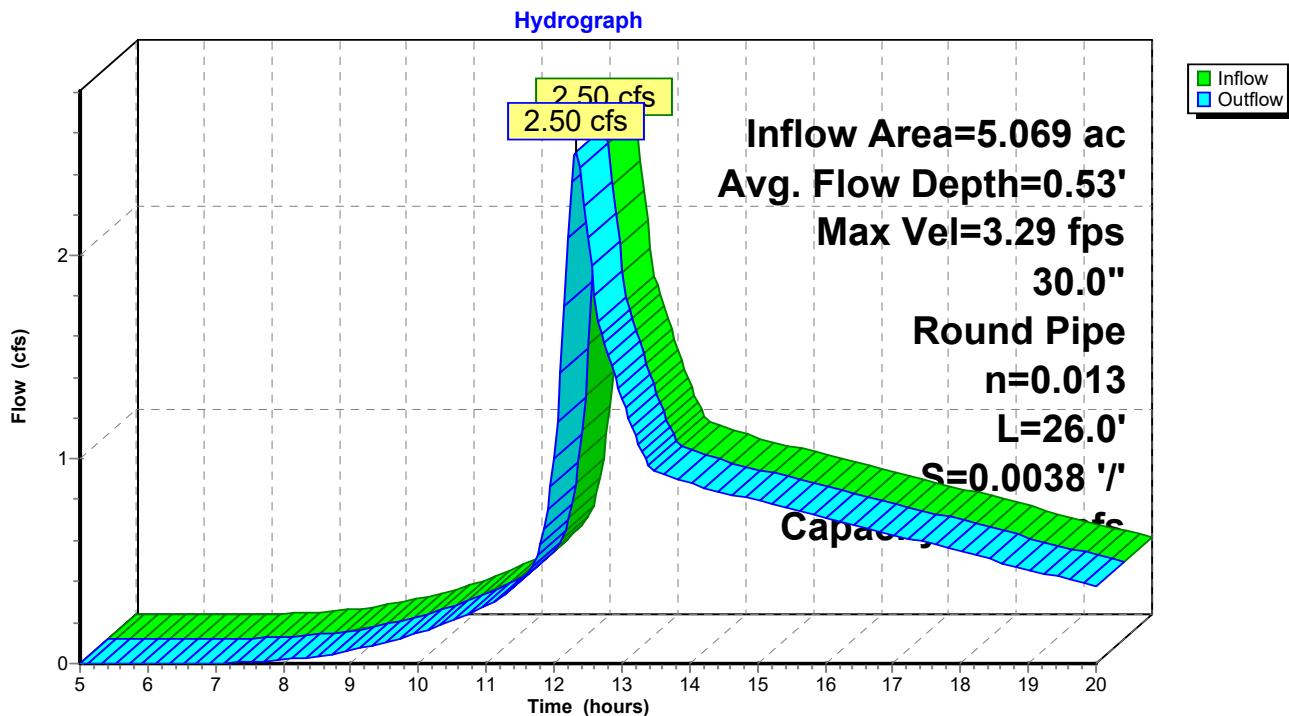
Peak Storage= 115 cf @ 12.29 hrs
 Average Depth at Peak Storage= 0.40'
 Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 21.48 cfs

24.0" Round Pipe
 n= 0.013 Corrugated PE, smooth interior
 Length= 255.0' Slope= 0.0090 '"
 Inlet Invert= 248.40', Outlet Invert= 246.10'

Reach R1:


Summary for Reach R2:

Inflow Area = 5.069 ac, 64.73% Impervious, Inflow Depth > 1.45" for 1-yr event
 Inflow = 2.50 cfs @ 12.32 hrs, Volume= 0.613 af
 Outflow = 2.50 cfs @ 12.32 hrs, Volume= 0.612 af, Atten= 0%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Max. Velocity= 3.29 fps, Min. Travel Time= 0.1 min
 Avg. Velocity = 1.77 fps, Avg. Travel Time= 0.2 min

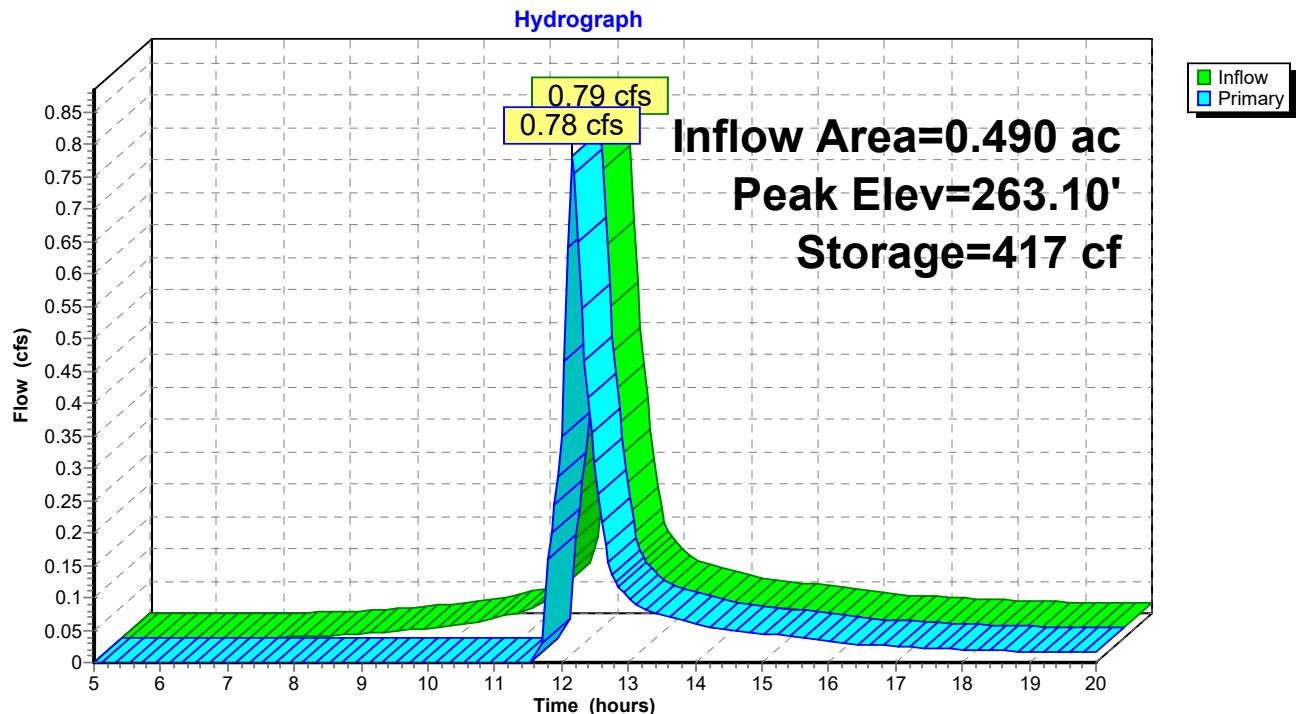
Peak Storage= 20 cf @ 12.32 hrs
 Average Depth at Peak Storage= 0.53'
 Bank-Full Depth= 2.50' Flow Area= 4.9 sf, Capacity= 25.44 cfs

30.0" Round Pipe
 n= 0.013 Corrugated PE, smooth interior
 Length= 26.0' Slope= 0.0038 '/
 Inlet Invert= 246.10', Outlet Invert= 246.00'

Reach R2:

Summary for Pond B-1: Bioretention

Inflow Area = 0.490 ac, 67.76% Impervious, Inflow Depth > 1.52" for 1-yr event
 Inflow = 0.79 cfs @ 12.15 hrs, Volume= 0.062 af
 Outflow = 0.78 cfs @ 12.17 hrs, Volume= 0.054 af, Atten= 1%, Lag= 1.0 min
 Primary = 0.78 cfs @ 12.17 hrs, Volume= 0.054 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Peak Elev= 263.10' @ 12.17 hrs Surf.Area= 744 sf Storage= 417 cf

Plug-Flow detention time= 61.9 min calculated for 0.054 af (87% of inflow)
 Center-of-Mass det. time= 23.7 min (808.9 - 785.2)

Volume	Invert	Avail.Storage	Storage Description
#1	262.50'	1,160 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
262.50	659	0	0
263.00	727	347	347
264.00	900	814	1,160
Device	Routing	Invert	Outlet Devices
#1	Primary	258.50'	12.0" Round Culvert L= 16.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 258.50' / 258.30' S= 0.0125 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	263.00'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	263.50'	10.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

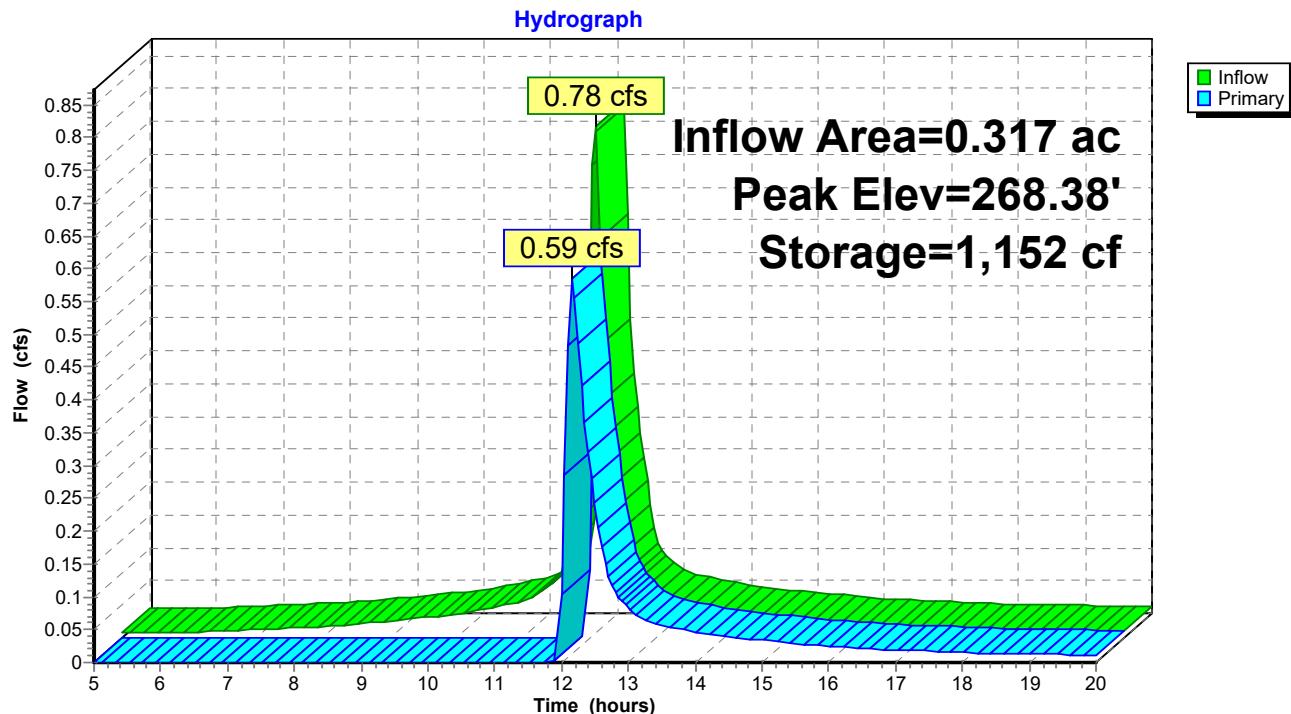
Primary OutFlow Max=0.76 cfs @ 12.17 hrs HW=263.09' (Free Discharge)

↑1=Culvert (Passes 0.76 cfs of 7.65 cfs potential flow)
 ↑2=Orifice/Grate (Weir Controls 0.76 cfs @ 1.01 fps)
 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond B-1: Bioretention

Summary for Pond B-2: Bioretention

Inflow Area = 0.317 ac, 100.00% Impervious, Inflow Depth > 2.23" for 1-yr event
 Inflow = 0.78 cfs @ 12.09 hrs, Volume= 0.059 af
 Outflow = 0.59 cfs @ 12.16 hrs, Volume= 0.038 af, Atten= 25%, Lag= 4.7 min
 Primary = 0.59 cfs @ 12.16 hrs, Volume= 0.038 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Peak Elev= 268.38' @ 12.16 hrs Surf.Area= 3,155 sf Storage= 1,152 cf

Plug-Flow detention time= 150.4 min calculated for 0.038 af (64% of inflow)
 Center-of-Mass det. time= 77.1 min (817.8 - 740.8)

Volume	Invert	Avail.Storage	Storage Description
#1	268.00'	3,220 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
268.00	2,919	0	0
268.50	3,230	1,537	1,537
269.00	3,500	1,683	3,220
Device	Routing	Invert	Outlet Devices
#1	Primary	264.00'	15.0" Round Culvert L= 250.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 264.00' / 252.40' S= 0.0464 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	268.30'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.57 cfs @ 12.16 hrs HW=268.38' (Free Discharge)

↑ 1=Culvert (Passes 0.57 cfs of 11.45 cfs potential flow)
 ↑ 2=Orifice/Grate (Weir Controls 0.57 cfs @ 0.91 fps)

Pond B-2: Bioretention

Summary for Pond P-1: Pond

Inflow Area = 3.500 ac, 68.34% Impervious, Inflow Depth > 1.59" for 1-yr event
 Inflow = 5.16 cfs @ 12.21 hrs, Volume= 0.463 af
 Outflow = 0.91 cfs @ 12.90 hrs, Volume= 0.424 af, Atten= 82%, Lag= 41.2 min
 Primary = 0.91 cfs @ 12.90 hrs, Volume= 0.424 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Starting Elev= 246.50' Surf.Area= 1,909 sf Storage= 2,044 cf
 Peak Elev= 249.47' @ 12.90 hrs Surf.Area= 4,342 sf Storage= 11,336 cf (9,291 cf above start)
 Flood Elev= 252.00' Surf.Area= 7,067 sf Storage= 25,423 cf (23,378 cf above start)

Plug-Flow detention time= 202.3 min calculated for 0.377 af (81% of inflow)
 Center-of-Mass det. time= 120.7 min (905.5 - 784.8)

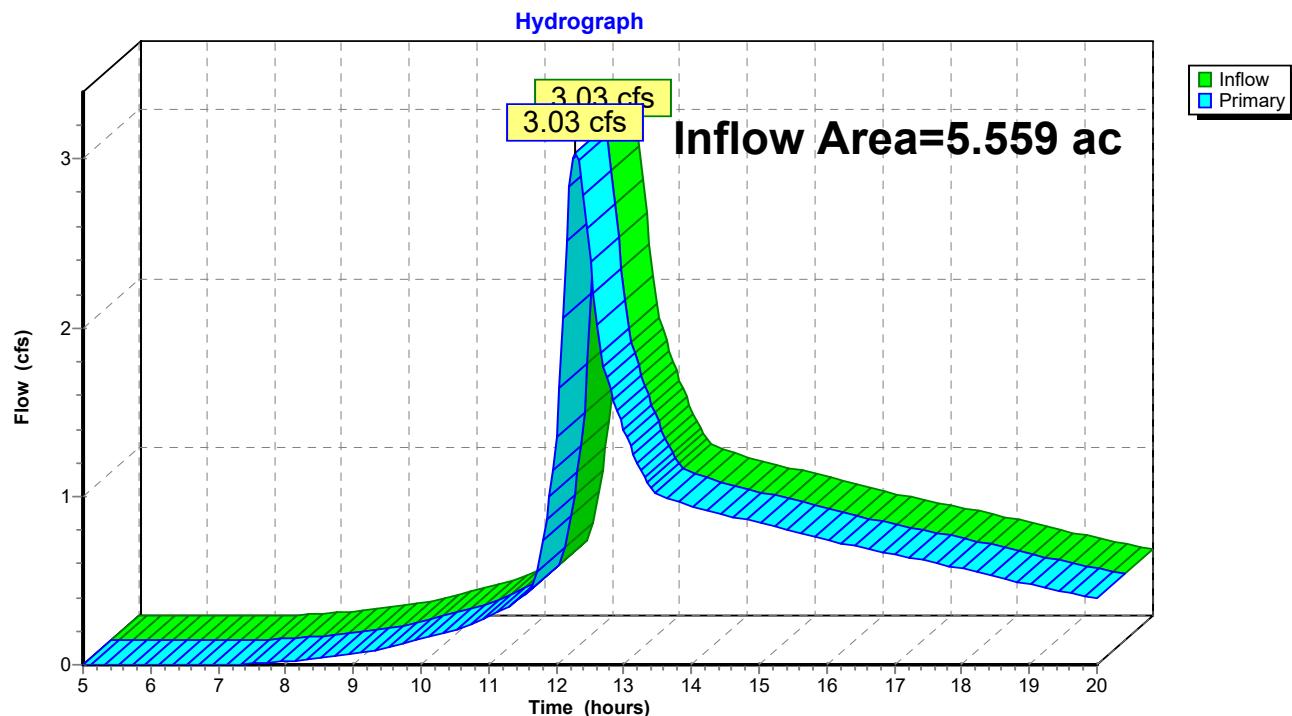
Volume	Invert	Avail.Storage	Storage Description
#1	245.00'	25,423 cf	Custom Stage Data (Prismatic) Listed below
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
245.00	708	0	0
246.00	1,472	1,090	1,090
247.00	2,345	1,909	2,999
248.00	3,175	2,760	5,759
249.00	3,876	3,526	9,284
250.00	4,870	4,373	13,657
251.00	5,797	5,334	18,991
252.00	7,067	6,432	25,423

Device	Routing	Invert	Outlet Devices
#1	Primary	246.50'	18.0" Round Culvert L= 78.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 246.50' / 246.10' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	246.50'	4.0" Vert. Orifice/Grate C= 0.600
#3	Primary	251.80'	20.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32
#4	Device 1	251.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Device 1	249.40'	20.0" W x 5.0" H Vert. Orifice/Grate X 2.00 C= 0.600

Primary OutFlow Max=0.90 cfs @ 12.90 hrs HW=249.47' (Free Discharge)

- ↑ 1=Culvert (Passes 0.90 cfs of 11.33 cfs potential flow)
- ↑ 2=Orifice/Grate (Orifice Controls 0.70 cfs @ 8.06 fps)
- ↑ 4=Orifice/Grate (Controls 0.00 cfs)
- ↑ 5=Orifice/Grate (Orifice Controls 0.19 cfs @ 0.84 fps)
- 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-1: Pond**Hydrograph**


Summary for Pond SDP-1:

Inflow Area = 5.559 ac, 64.99% Impervious, Inflow Depth > 1.44" for 1-yr event

Inflow = 3.03 cfs @ 12.29 hrs, Volume= 0.667 af

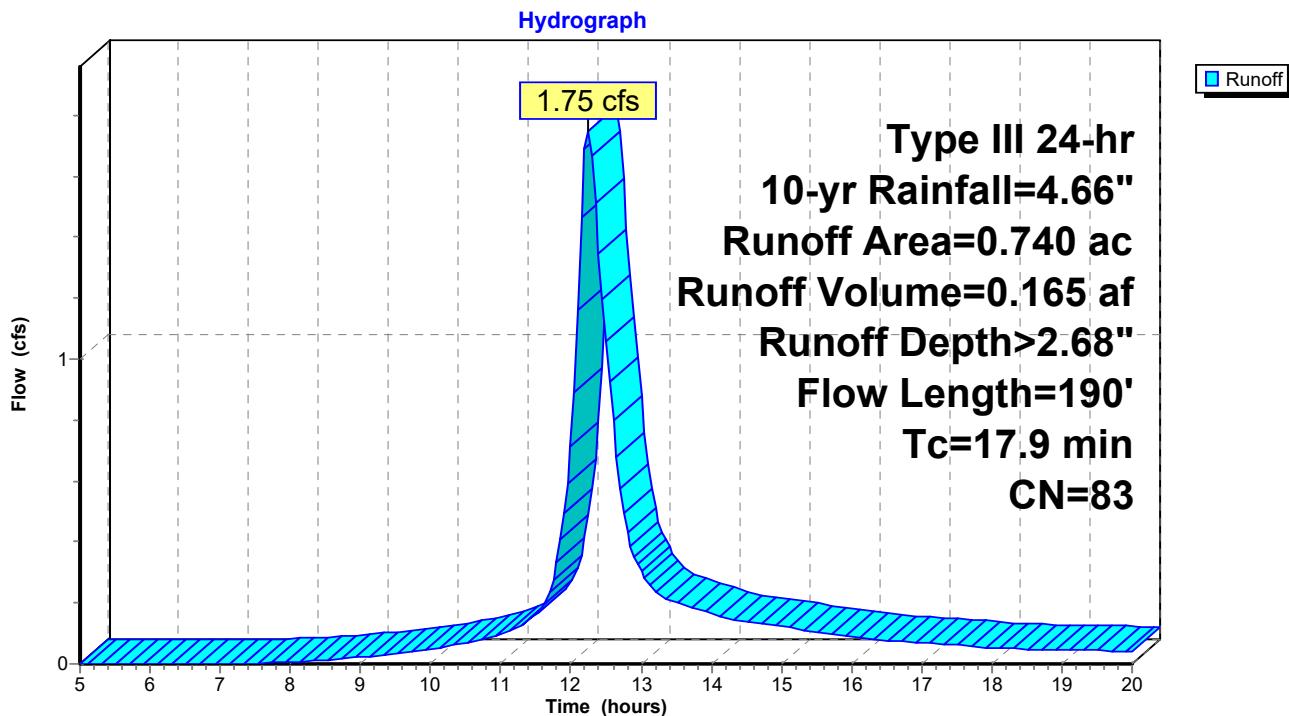
Primary = 3.03 cfs @ 12.29 hrs, Volume= 0.667 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SDP-1:

Summary for Subcatchment OFFSITE:

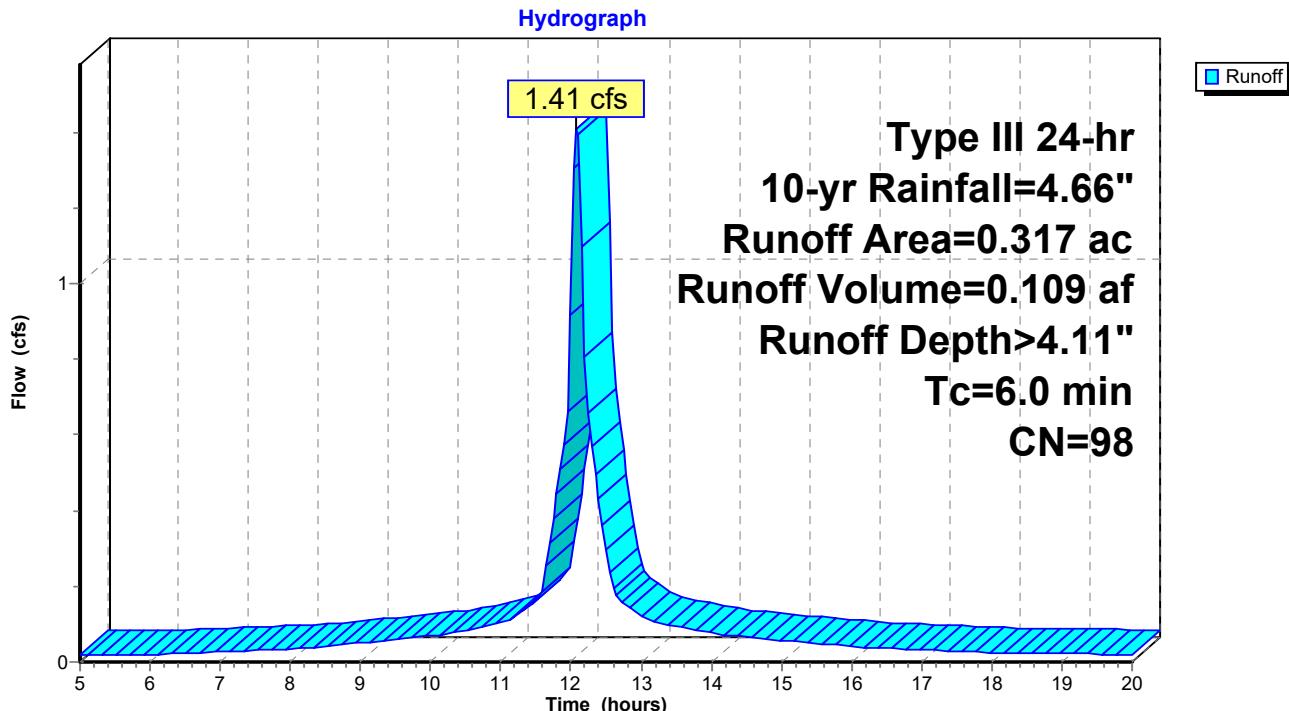
Runoff = 1.75 cfs @ 12.25 hrs, Volume= 0.165 af, Depth> 2.68"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-yr Rainfall=4.66"

Area (ac)	CN	Description
0.281	98	Paved parking, HSG C
0.459	74	>75% Grass cover, Good, HSG C
0.740	83	Weighted Average
0.459		62.03% Pervious Area
0.281		37.97% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.9	150	0.0300	0.15		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
1.0	40	0.0100	0.70		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
17.9	190	Total			

Subcatchment OFFSITE:


Summary for Subcatchment PR-B-1:

Runoff = 1.41 cfs @ 12.09 hrs, Volume= 0.109 af, Depth> 4.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-yr Rainfall=4.66"

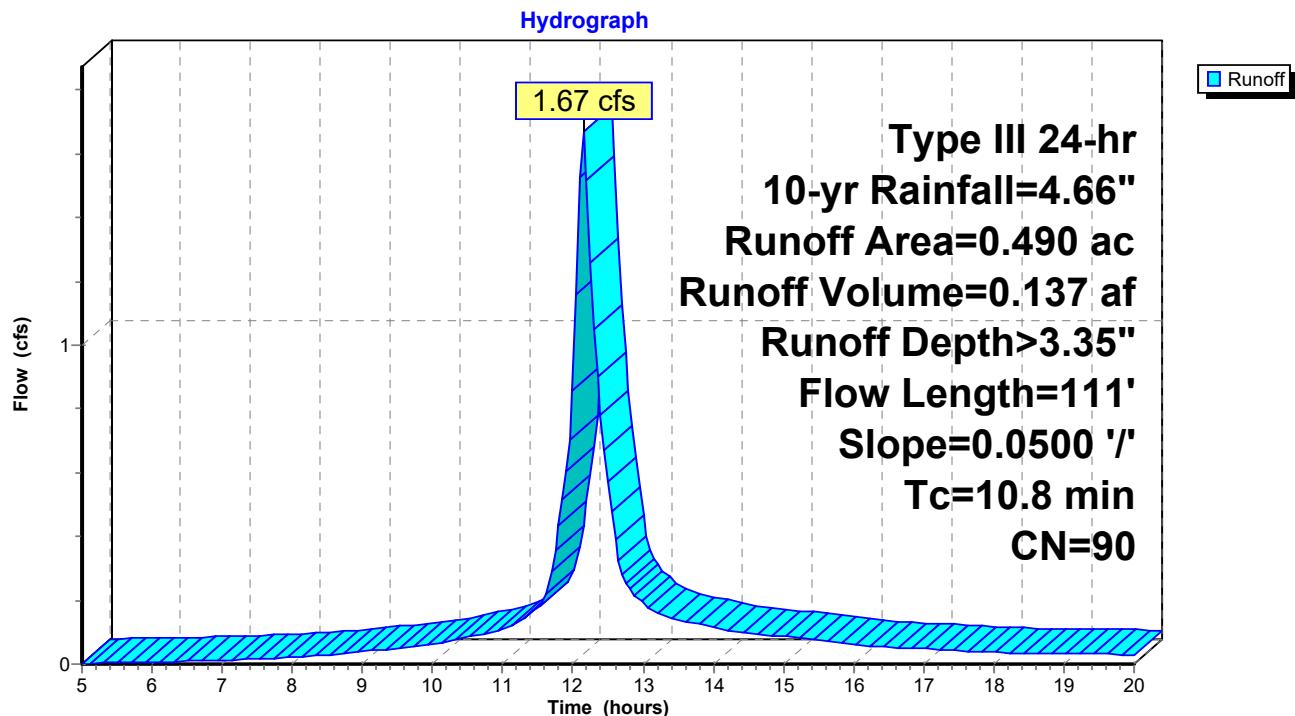
Area (ac)	CN	Description
0.317	98	Roofs, HSG C
0.317		100.00% Impervious Area

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	Direct Entry,				

Subcatchment PR-B-1:

Summary for Subcatchment PR-B-2:

Runoff = 1.67 cfs @ 12.15 hrs, Volume= 0.137 af, Depth> 3.35"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-yr Rainfall=4.66"

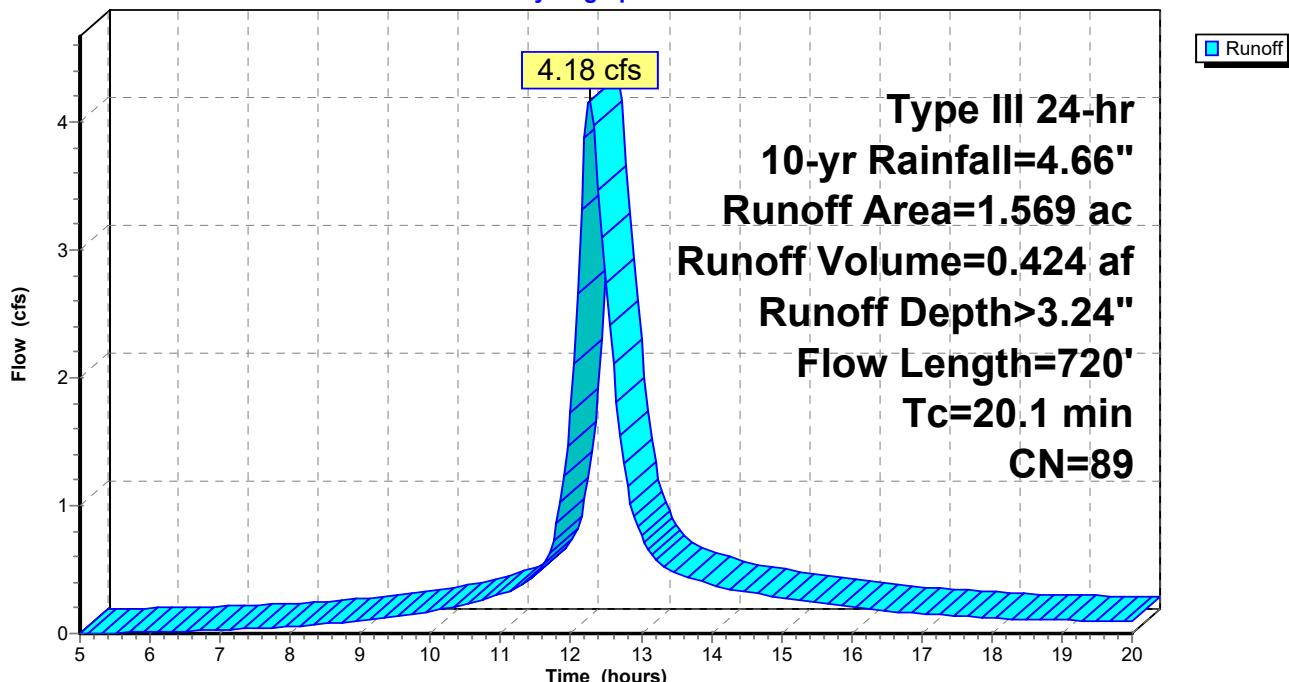
Area (ac)	CN	Description
0.158	74	>75% Grass cover, Good, HSG C
0.332	98	Roofs, HSG C
0.490	90	Weighted Average
0.158		32.24% Pervious Area
0.332		67.76% Impervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.8	111	0.0500	0.17		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"

Subcatchment PR-B-2:

Summary for Subcatchment PR-EX:

Runoff = 4.18 cfs @ 12.27 hrs, Volume= 0.424 af, Depth> 3.24"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 10-yr Rainfall=4.66"

Area (ac)	CN	Description
0.261	98	Paved parking, HSG C
0.557	98	Roofs, HSG C
*	0.071	Concrete, HSG C
0.084	70	Woods, Good, HSG C
0.087	96	Gravel surface, HSG C
0.509	74	>75% Grass cover, Good, HSG C
1.569	89	Weighted Average
0.680		43.34% Pervious Area
0.889		56.66% Impervious Area

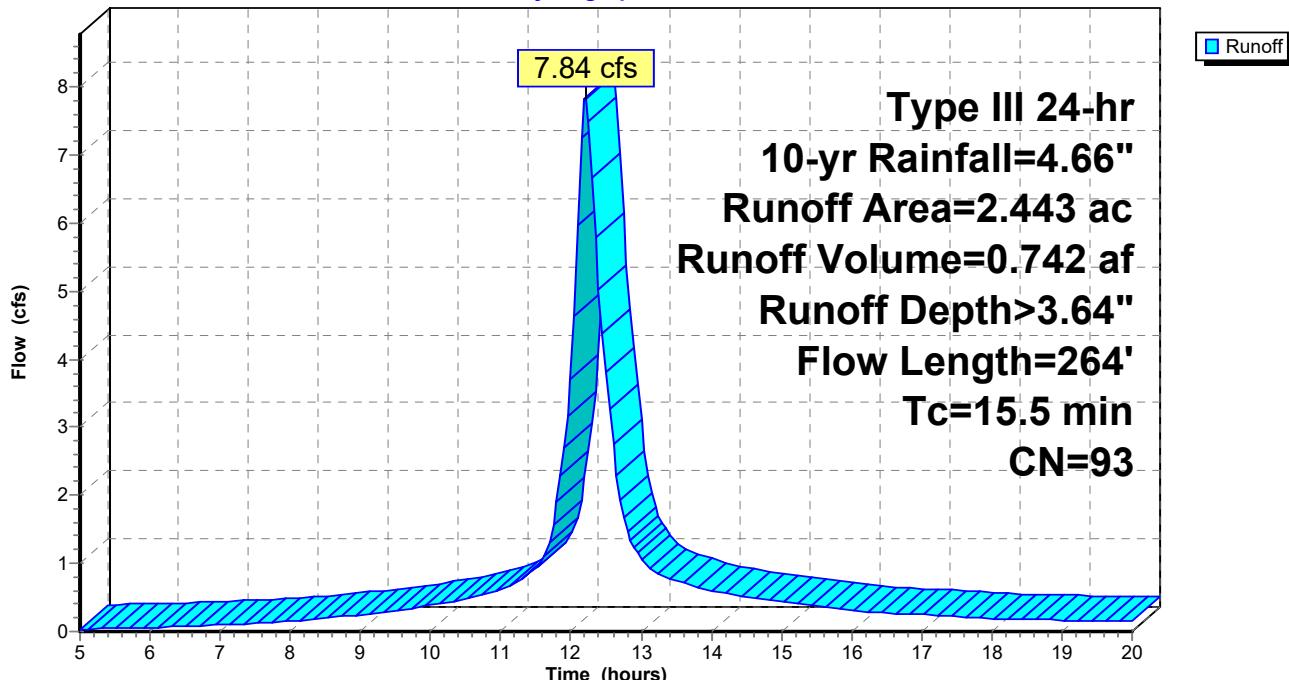
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.5	150	0.0240	0.14		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
1.6	570	0.0066	5.85	18.38	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013 Corrugated PE, smooth interior
20.1	720	Total			

Subcatchment PR-EX:

Hydrograph

Summary for Subcatchment PR-P-1:

Runoff = 7.84 cfs @ 12.21 hrs, Volume= 0.742 af, Depth> 3.64"

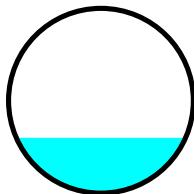

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type III 24-hr 10-yr Rainfall=4.66"

Area (ac)	CN	Description
1.005	98	Roofs, HSG C
0.149	96	Gravel surface, HSG C
0.789	98	Paved parking, HSG C
0.500	74	>75% Grass cover, Good, HSG C
2.443	93	Weighted Average
0.649		26.57% Pervious Area
1.794		73.43% Impervious Area

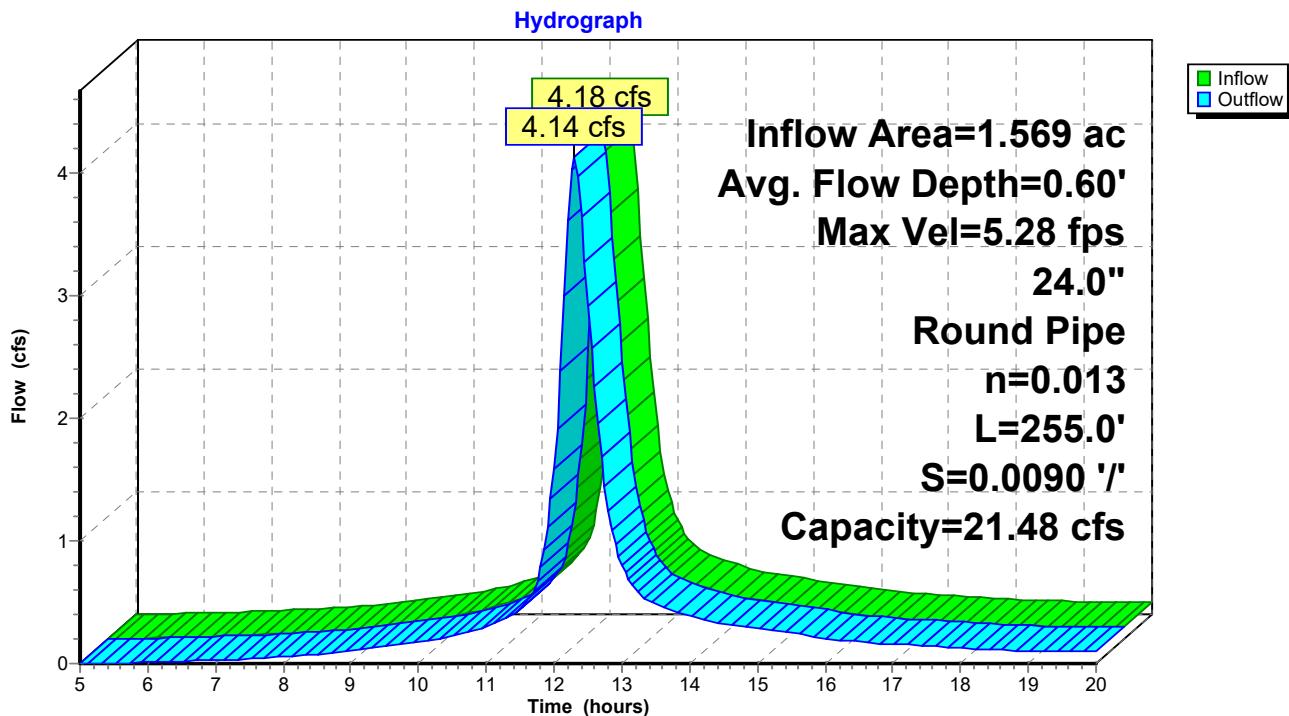
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.4	100	0.0200	0.12		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
0.9	126	0.0200	2.28		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
0.2	38	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior
15.5	264	Total			

Subcatchment PR-P-1:

Hydrograph


Summary for Reach R1:

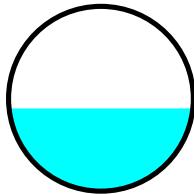
Inflow Area = 1.569 ac, 56.66% Impervious, Inflow Depth > 3.24" for 10-yr event
 Inflow = 4.18 cfs @ 12.27 hrs, Volume= 0.424 af
 Outflow = 4.14 cfs @ 12.30 hrs, Volume= 0.423 af, Atten= 1%, Lag= 1.6 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Max. Velocity= 5.28 fps, Min. Travel Time= 0.8 min
 Avg. Velocity = 2.09 fps, Avg. Travel Time= 2.0 min

Peak Storage= 201 cf @ 12.28 hrs
 Average Depth at Peak Storage= 0.60'
 Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 21.48 cfs

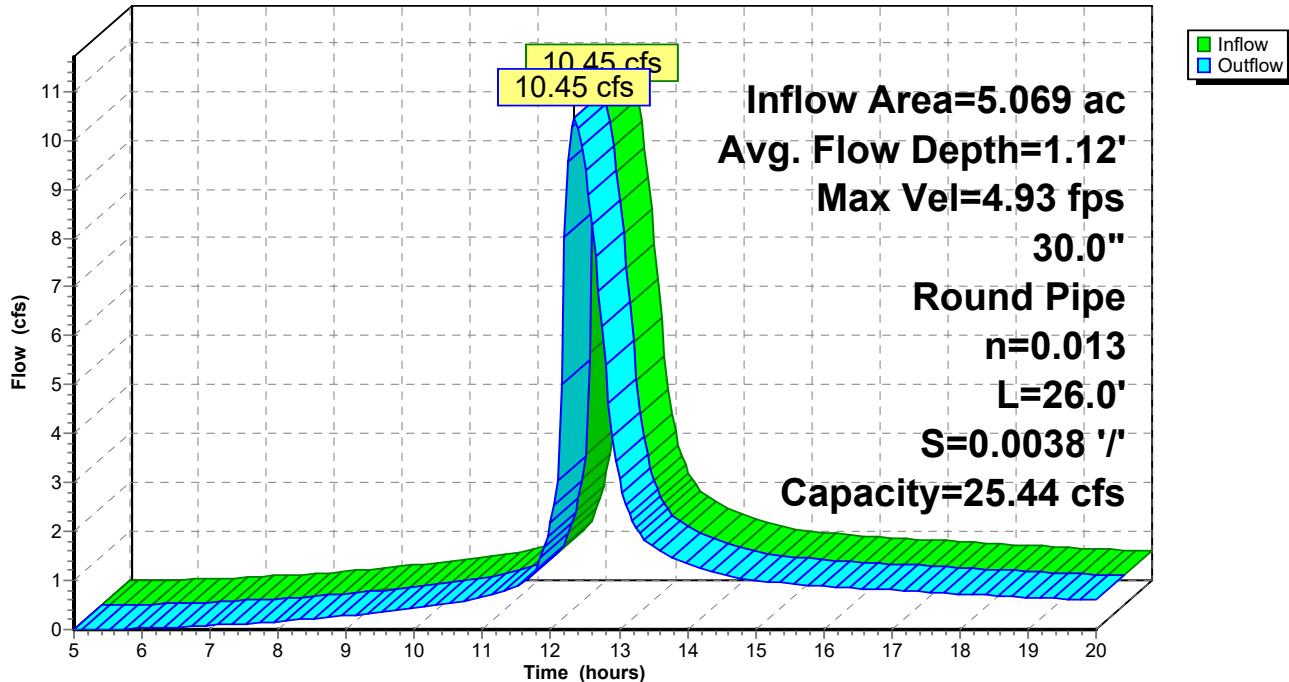
24.0" Round Pipe
 n= 0.013 Corrugated PE, smooth interior
 Length= 255.0' Slope= 0.0090 '/'
 Inlet Invert= 248.40', Outlet Invert= 246.10'

Reach R1:


Summary for Reach R2:

Inflow Area = 5.069 ac, 64.73% Impervious, Inflow Depth > 3.14" for 10-yr event
 Inflow = 10.45 cfs @ 12.35 hrs, Volume= 1.325 af
 Outflow = 10.45 cfs @ 12.35 hrs, Volume= 1.324 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Max. Velocity= 4.93 fps, Min. Travel Time= 0.1 min
 Avg. Velocity = 2.17 fps, Avg. Travel Time= 0.2 min


Peak Storage= 55 cf @ 12.35 hrs
 Average Depth at Peak Storage= 1.12'
 Bank-Full Depth= 2.50' Flow Area= 4.9 sf, Capacity= 25.44 cfs

30.0" Round Pipe
 n= 0.013 Corrugated PE, smooth interior
 Length= 26.0' Slope= 0.0038 '/
 Inlet Invert= 246.10', Outlet Invert= 246.00'

Reach R2:

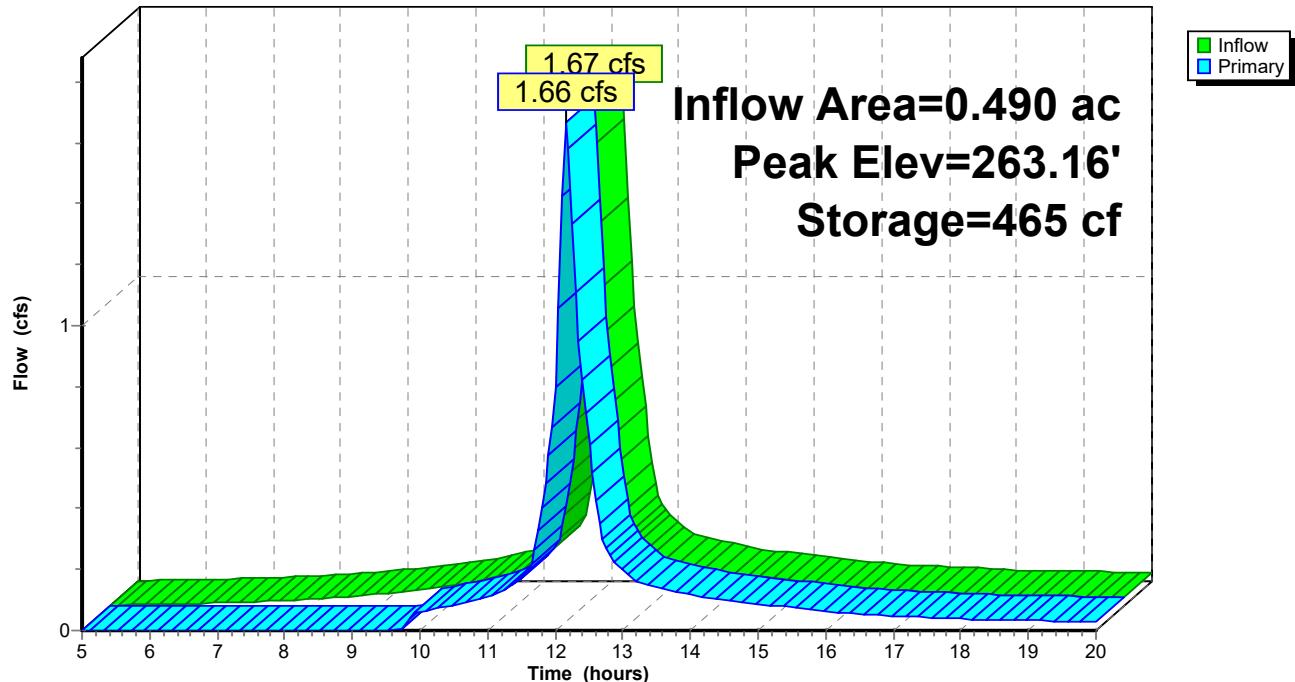
Hydrograph

Summary for Pond B-1: Bioretention

Inflow Area = 0.490 ac, 67.76% Impervious, Inflow Depth > 3.35" for 10-yr event
 Inflow = 1.67 cfs @ 12.15 hrs, Volume= 0.137 af
 Outflow = 1.66 cfs @ 12.16 hrs, Volume= 0.129 af, Atten= 1%, Lag= 0.8 min
 Primary = 1.66 cfs @ 12.16 hrs, Volume= 0.129 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Peak Elev= 263.16' @ 12.16 hrs Surf.Area= 755 sf Storage= 465 cf

Plug-Flow detention time= 39.2 min calculated for 0.128 af (94% of inflow)
 Center-of-Mass det. time= 17.8 min (784.4 - 766.6)


Volume	Invert	Avail.Storage	Storage Description
#1	262.50'	1,160 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
262.50	659	0	0
263.00	727	347	347
264.00	900	814	1,160

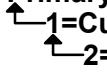
Device	Routing	Invert	Outlet Devices
#1	Primary	258.50'	12.0" Round Culvert L= 16.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 258.50' / 258.30' S= 0.0125 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	263.00'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	263.50'	10.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

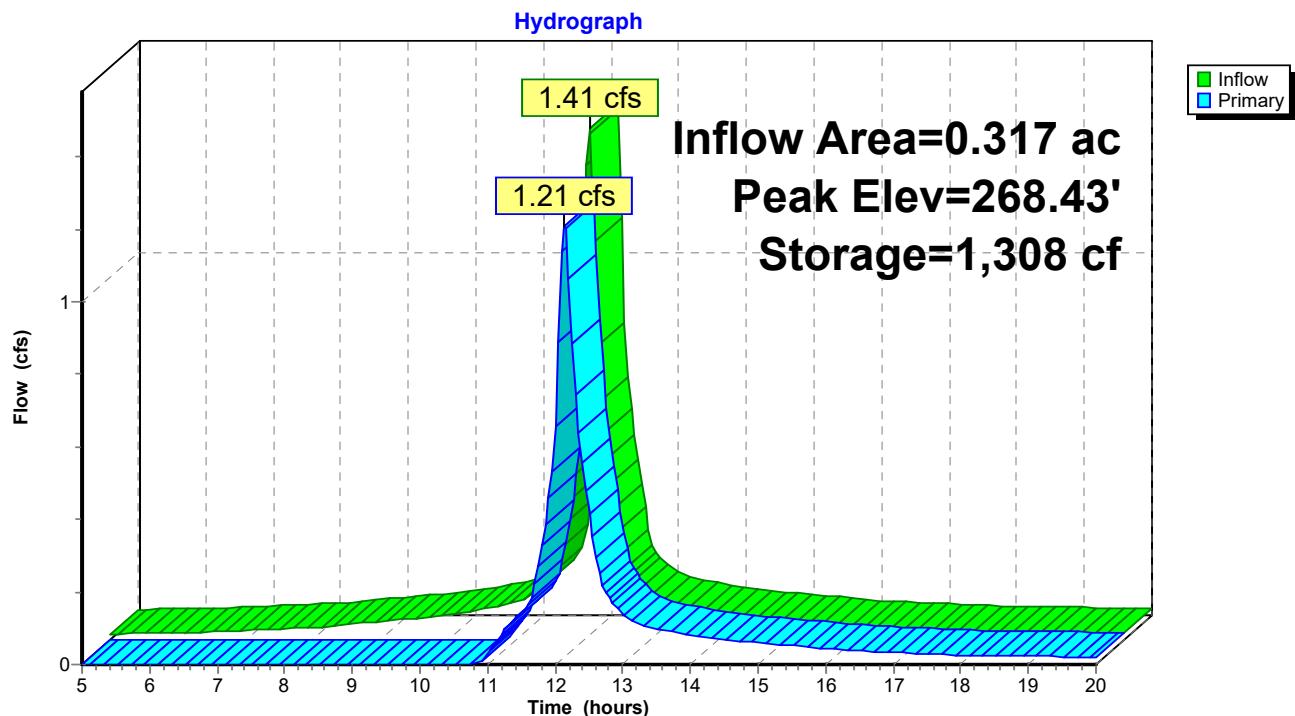
Primary OutFlow Max=1.63 cfs @ 12.16 hrs HW=263.16' (Free Discharge)

↑1=Culvert (Passes 1.63 cfs of 7.71 cfs potential flow)
 ↑2=Orifice/Grate (Weir Controls 1.63 cfs @ 1.30 fps)
 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond B-1: Bioretention**Hydrograph**

Summary for Pond B-2: Bioretention


Inflow Area = 0.317 ac, 100.00% Impervious, Inflow Depth > 4.11" for 10-yr event
 Inflow = 1.41 cfs @ 12.09 hrs, Volume= 0.109 af
 Outflow = 1.21 cfs @ 12.14 hrs, Volume= 0.087 af, Atten= 15%, Lag= 3.2 min
 Primary = 1.21 cfs @ 12.14 hrs, Volume= 0.087 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Peak Elev= 268.43' @ 12.14 hrs Surf.Area= 3,186 sf Storage= 1,308 cf

Plug-Flow detention time= 109.2 min calculated for 0.087 af (80% of inflow)
 Center-of-Mass det. time= 56.0 min (791.5 - 735.5)

Volume	Invert	Avail.Storage	Storage Description
#1	268.00'	3,220 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
268.00	2,919	0	0
268.50	3,230	1,537	1,537
269.00	3,500	1,683	3,220
Device	Routing	Invert	Outlet Devices
#1	Primary	264.00'	15.0" Round Culvert L= 250.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 264.00' / 252.40' S= 0.0464 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	268.30'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=1.19 cfs @ 12.14 hrs HW=268.43' (Free Discharge)

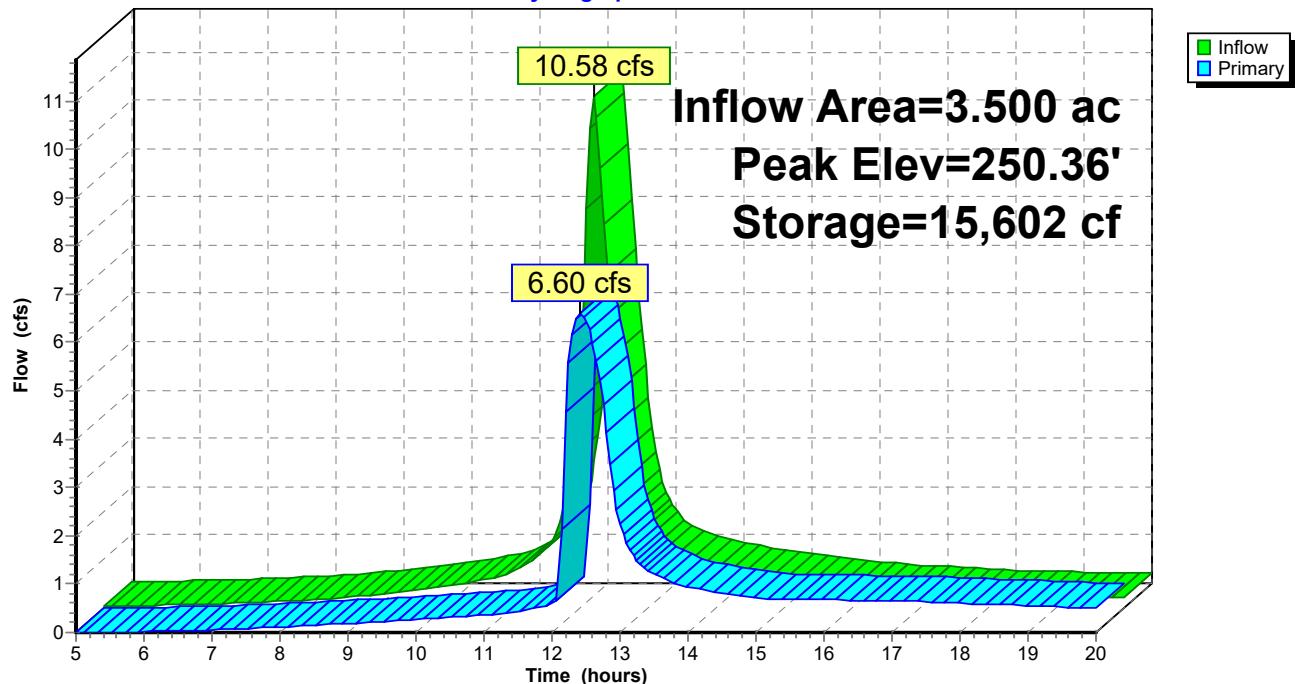
 1=Culvert (Passes 1.19 cfs of 11.52 cfs potential flow)
 2=Orifice/Grate (Weir Controls 1.19 cfs @ 1.17 fps)

Pond B-2: Bioretention

Summary for Pond P-1: Pond

Inflow Area = 3.500 ac, 68.34% Impervious, Inflow Depth > 3.41" for 10-yr event
 Inflow = 10.58 cfs @ 12.20 hrs, Volume= 0.994 af
 Outflow = 6.60 cfs @ 12.42 hrs, Volume= 0.901 af, Atten= 38%, Lag= 12.9 min
 Primary = 6.60 cfs @ 12.42 hrs, Volume= 0.901 af

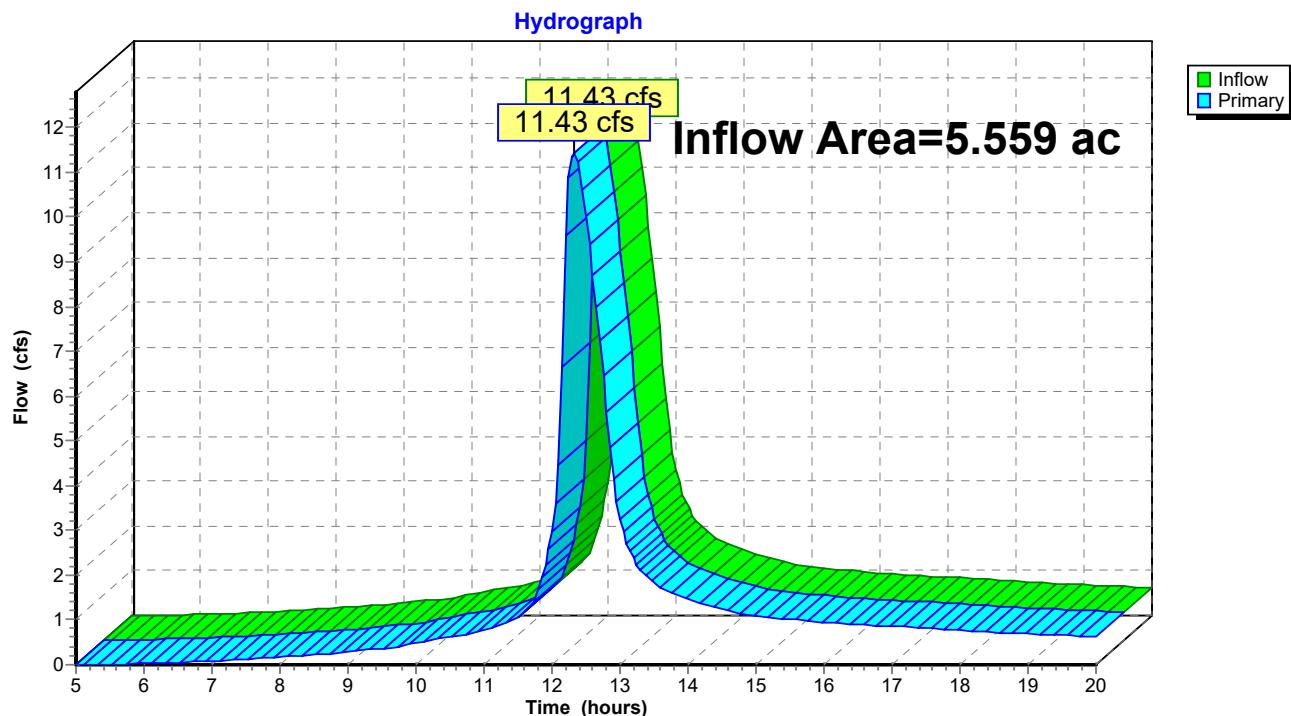
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Starting Elev= 246.50' Surf.Area= 1,909 sf Storage= 2,044 cf
 Peak Elev= 250.36' @ 12.42 hrs Surf.Area= 5,208 sf Storage= 15,602 cf (13,558 cf above start)
 Flood Elev= 252.00' Surf.Area= 7,067 sf Storage= 25,423 cf (23,378 cf above start)


Plug-Flow detention time= 123.4 min calculated for 0.854 af (86% of inflow)
 Center-of-Mass det. time= 64.8 min (833.2 - 768.4)

Volume	Invert	Avail.Storage	Storage Description
#1	245.00'	25,423 cf	Custom Stage Data (Prismatic) Listed below
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
245.00	708	0	0
246.00	1,472	1,090	1,090
247.00	2,345	1,909	2,999
248.00	3,175	2,760	5,759
249.00	3,876	3,526	9,284
250.00	4,870	4,373	13,657
251.00	5,797	5,334	18,991
252.00	7,067	6,432	25,423

Device	Routing	Invert	Outlet Devices
#1	Primary	246.50'	18.0" Round Culvert L= 78.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 246.50' / 246.10' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	246.50'	4.0" Vert. Orifice/Grate C= 0.600
#3	Primary	251.80'	20.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32
#4	Device 1	251.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Device 1	249.40'	20.0" W x 5.0" H Vert. Orifice/Grate X 2.00 C= 0.600

Primary OutFlow Max=6.59 cfs @ 12.42 hrs HW=250.36' (Free Discharge)


- ↑ 1=Culvert (Passes 6.59 cfs of 13.77 cfs potential flow)
- ↑ 2=Orifice/Grate (Orifice Controls 0.81 cfs @ 9.25 fps)
- ↑ 4=Orifice/Grate (Controls 0.00 cfs)
- ↑ 5=Orifice/Grate (Orifice Controls 5.78 cfs @ 4.16 fps)
- 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

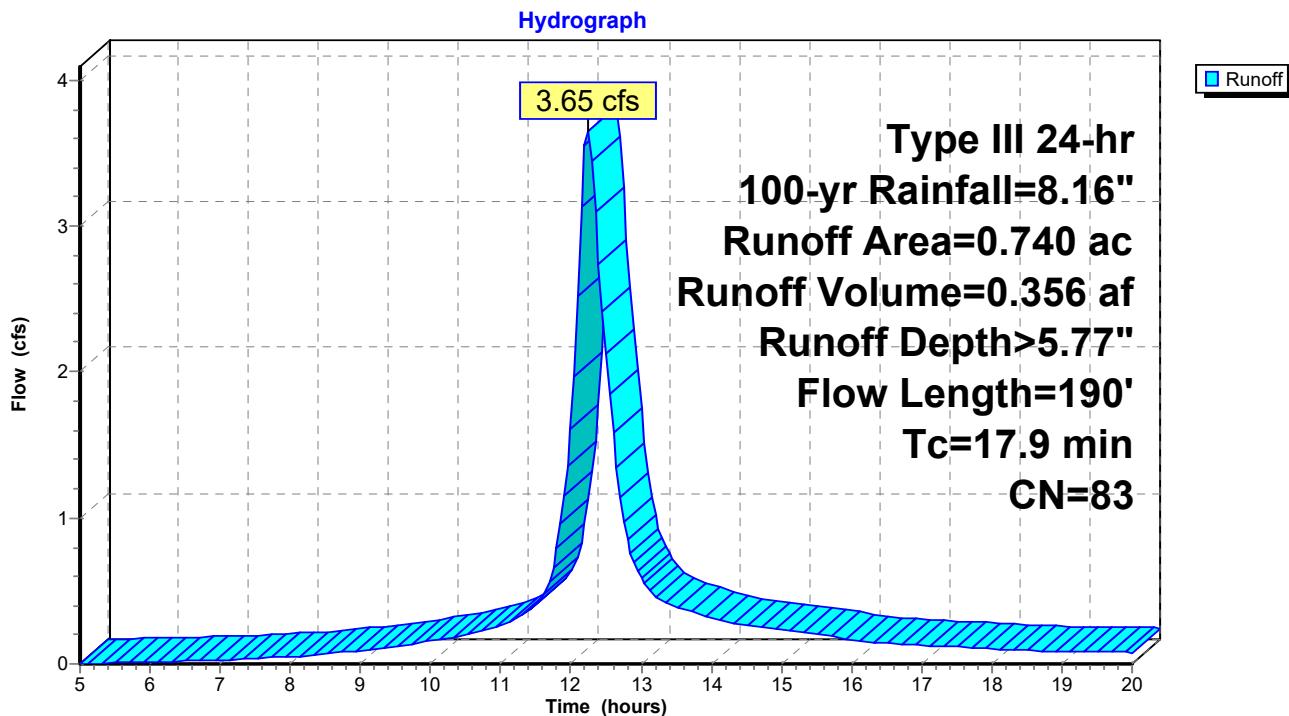
Pond P-1: Pond**Hydrograph**

Summary for Pond SDP-1:

Inflow Area = 5.559 ac, 64.99% Impervious, Inflow Depth > 3.14" for 10-yr event
Inflow = 11.43 cfs @ 12.33 hrs, Volume= 1.453 af
Primary = 11.43 cfs @ 12.33 hrs, Volume= 1.453 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SDP-1:

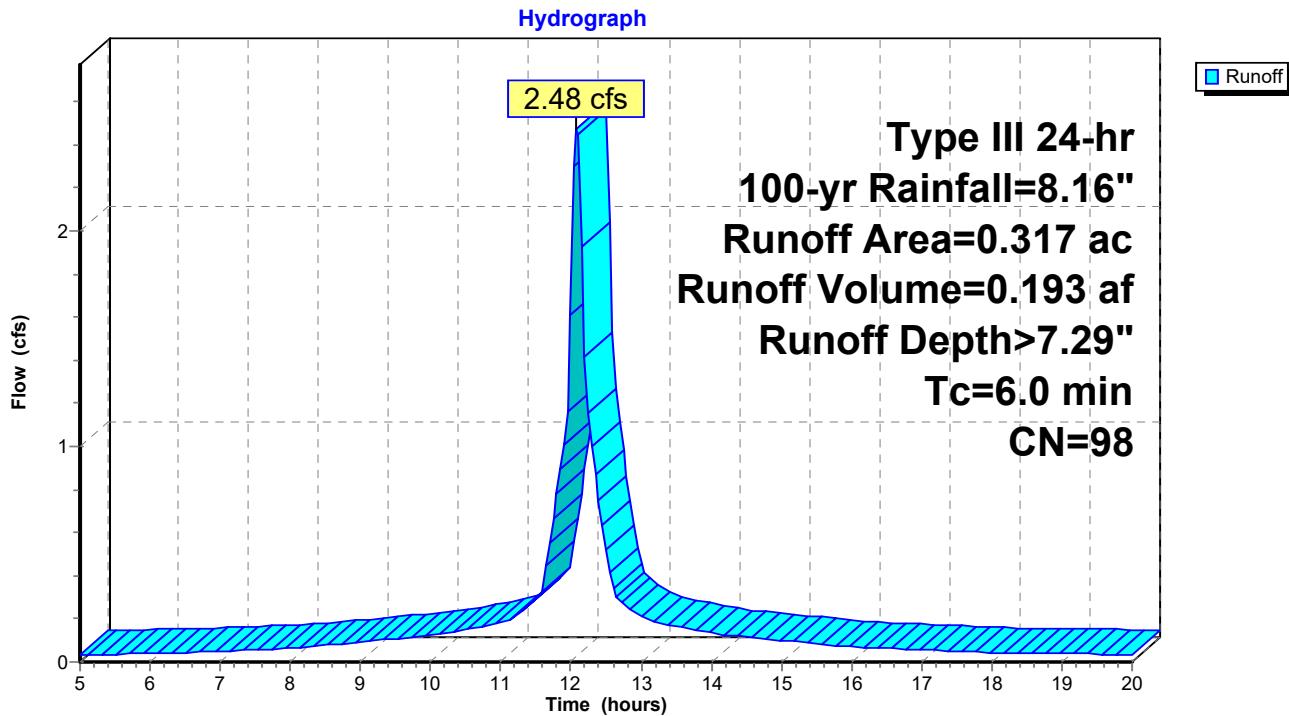

Summary for Subcatchment OFFSITE:

Runoff = 3.65 cfs @ 12.24 hrs, Volume= 0.356 af, Depth> 5.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 100-yr Rainfall=8.16"

Area (ac)	CN	Description		
0.281	98	Paved parking, HSG C		
0.459	74	>75% Grass cover, Good, HSG C		
0.740	83	Weighted Average		
0.459		62.03% Pervious Area		
0.281		37.97% Impervious Area		
Tc (min)	Length (feet)	Slope (ft/ft) Velocity (ft/sec) Capacity (cfs) Description		
16.9	150	0.0300	0.15	Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
1.0	40	0.0100	0.70	Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
17.9	190	Total		

Subcatchment OFFSITE:


Summary for Subcatchment PR-B-1:

Runoff = 2.48 cfs @ 12.09 hrs, Volume= 0.193 af, Depth> 7.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Type III 24-hr 100-yr Rainfall=8.16"

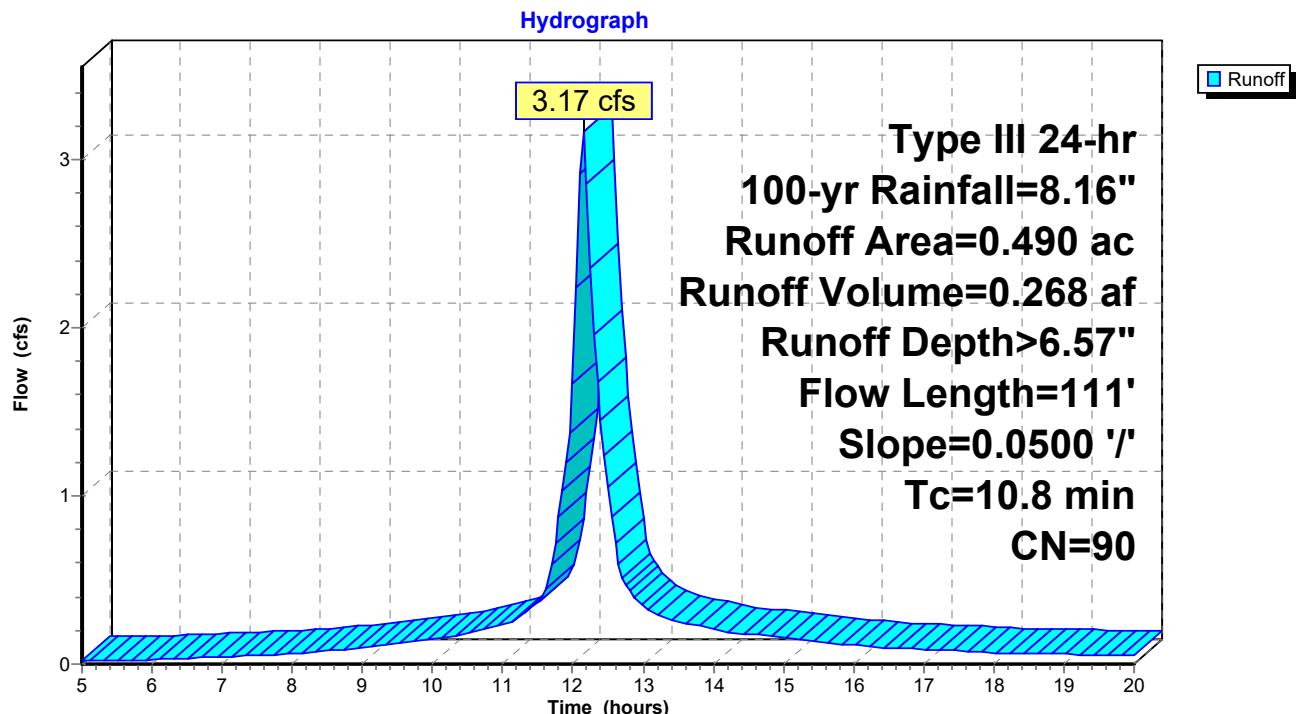
Area (ac)	CN	Description
0.317	98	Roofs, HSG C
0.317		100.00% Impervious Area

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0	Direct Entry,				

Subcatchment PR-B-1:

Summary for Subcatchment PR-B-2:

Runoff = 3.17 cfs @ 12.15 hrs, Volume= 0.268 af, Depth> 6.57"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 100-yr Rainfall=8.16"

Area (ac)	CN	Description
0.158	74	>75% Grass cover, Good, HSG C
0.332	98	Roofs, HSG C
0.490	90	Weighted Average
0.158		32.24% Pervious Area
0.332		67.76% Impervious Area

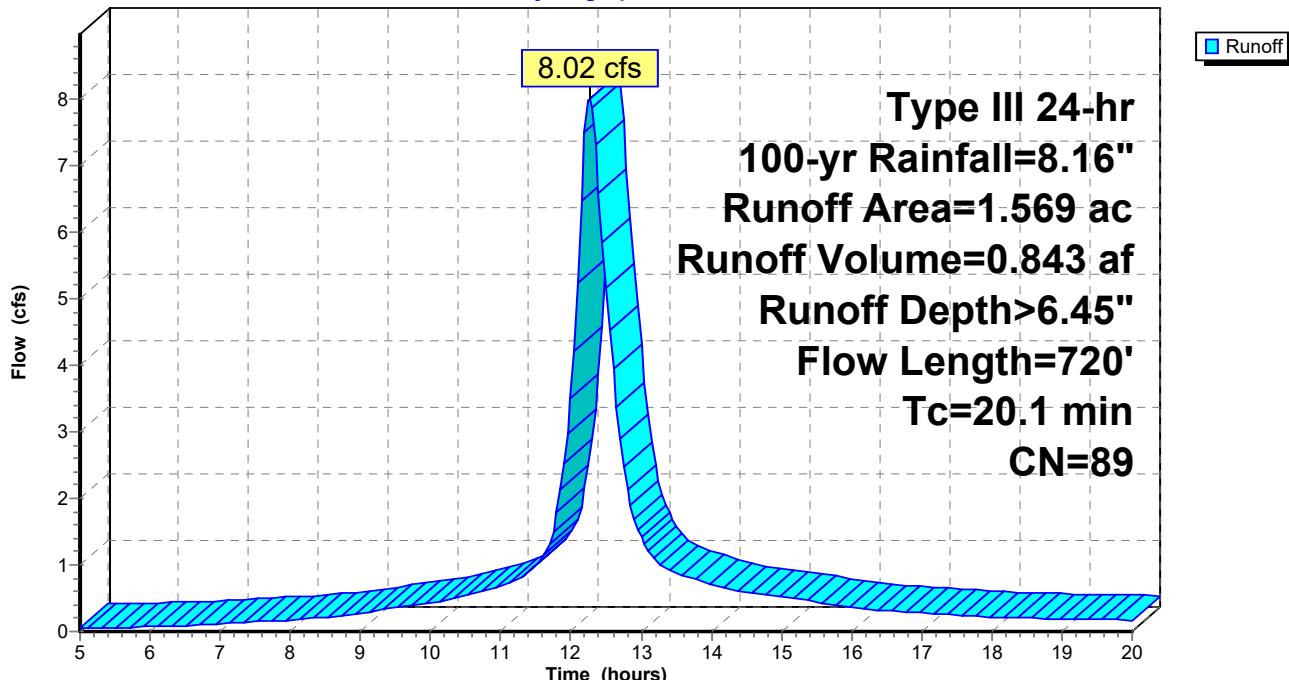
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.8	111	0.0500	0.17		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"

Subcatchment PR-B-2:

Summary for Subcatchment PR-EX:

Runoff = 8.02 cfs @ 12.27 hrs, Volume= 0.843 af, Depth> 6.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 100-yr Rainfall=8.16"


Area (ac)	CN	Description
0.261	98	Paved parking, HSG C
0.557	98	Roofs, HSG C
*	0.071	Concrete, HSG C
0.084	70	Woods, Good, HSG C
0.087	96	Gravel surface, HSG C
0.509	74	>75% Grass cover, Good, HSG C

1.569	89	Weighted Average
0.680		43.34% Pervious Area
0.889		56.66% Impervious Area

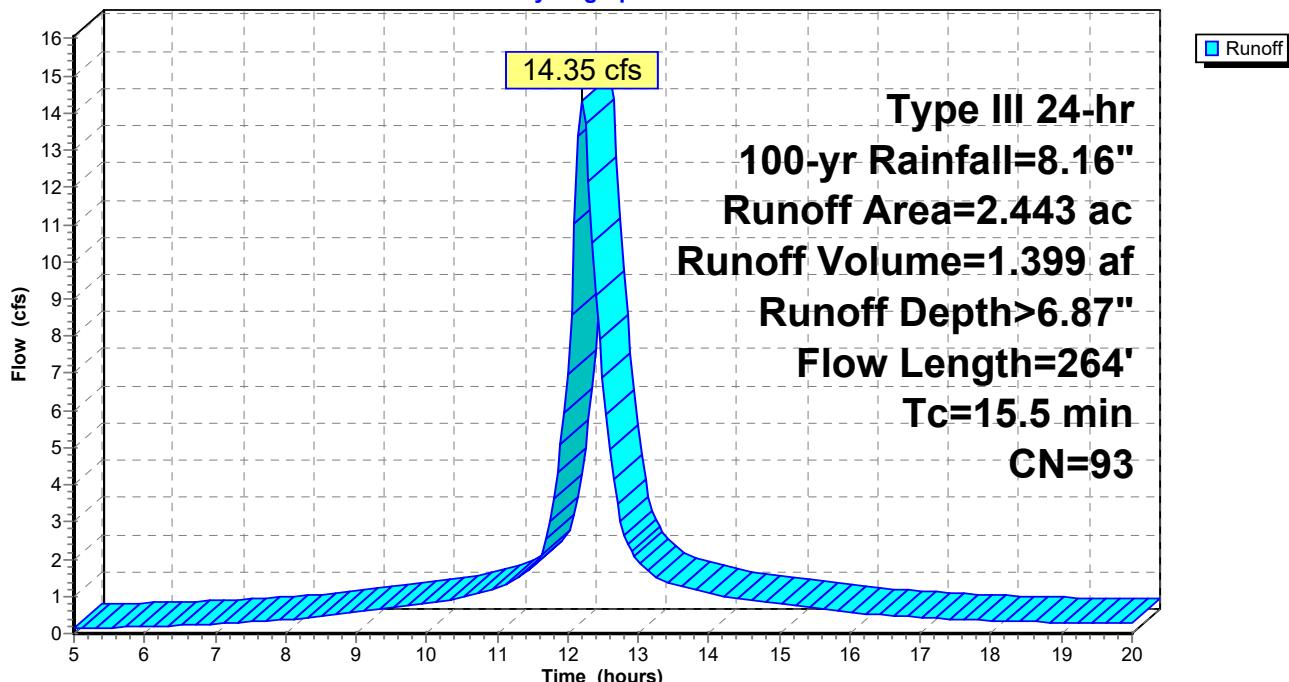
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.5	150	0.0240	0.14		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
1.6	570	0.0066	5.85	18.38	Pipe Channel, 24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.013 Corrugated PE, smooth interior
20.1	720	Total			

Subcatchment PR-EX:

Hydrograph

Summary for Subcatchment PR-P-1:

Runoff = 14.35 cfs @ 12.21 hrs, Volume= 1.399 af, Depth> 6.87"

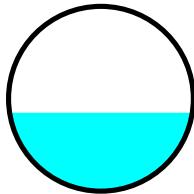

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Type III 24-hr 100-yr Rainfall=8.16"

Area (ac)	CN	Description
1.005	98	Roofs, HSG C
0.149	96	Gravel surface, HSG C
0.789	98	Paved parking, HSG C
0.500	74	>75% Grass cover, Good, HSG C
2.443	93	Weighted Average
0.649		26.57% Pervious Area
1.794		73.43% Impervious Area

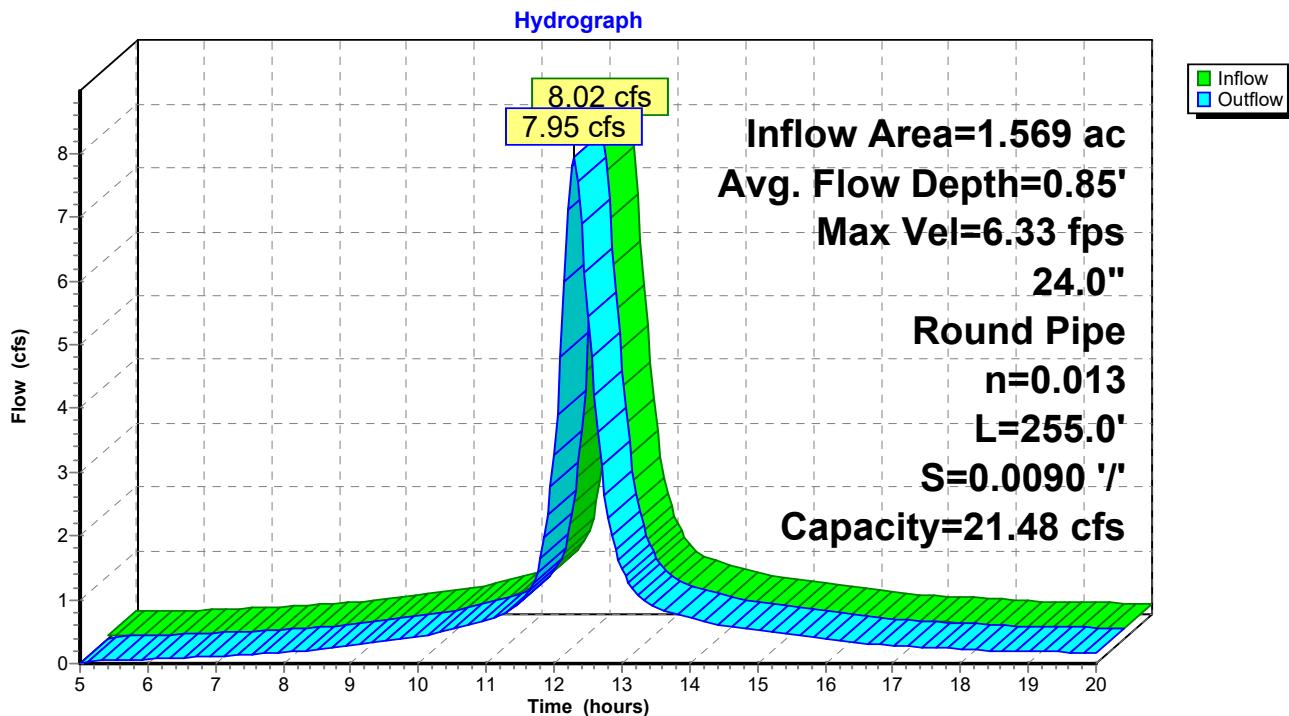
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.4	100	0.0200	0.12		Sheet Flow, Grass: Dense n= 0.240 P2= 3.15"
0.9	126	0.0200	2.28		Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
0.2	38	0.0050	3.21	2.52	Pipe Channel, 12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior
15.5	264	Total			

Subcatchment PR-P-1:

Hydrograph


Summary for Reach R1:

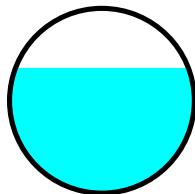
Inflow Area = 1.569 ac, 56.66% Impervious, Inflow Depth > 6.45" for 100-yr event
 Inflow = 8.02 cfs @ 12.27 hrs, Volume= 0.843 af
 Outflow = 7.95 cfs @ 12.29 hrs, Volume= 0.842 af, Atten= 1%, Lag= 1.3 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Max. Velocity= 6.33 fps, Min. Travel Time= 0.7 min
 Avg. Velocity = 2.66 fps, Avg. Travel Time= 1.6 min

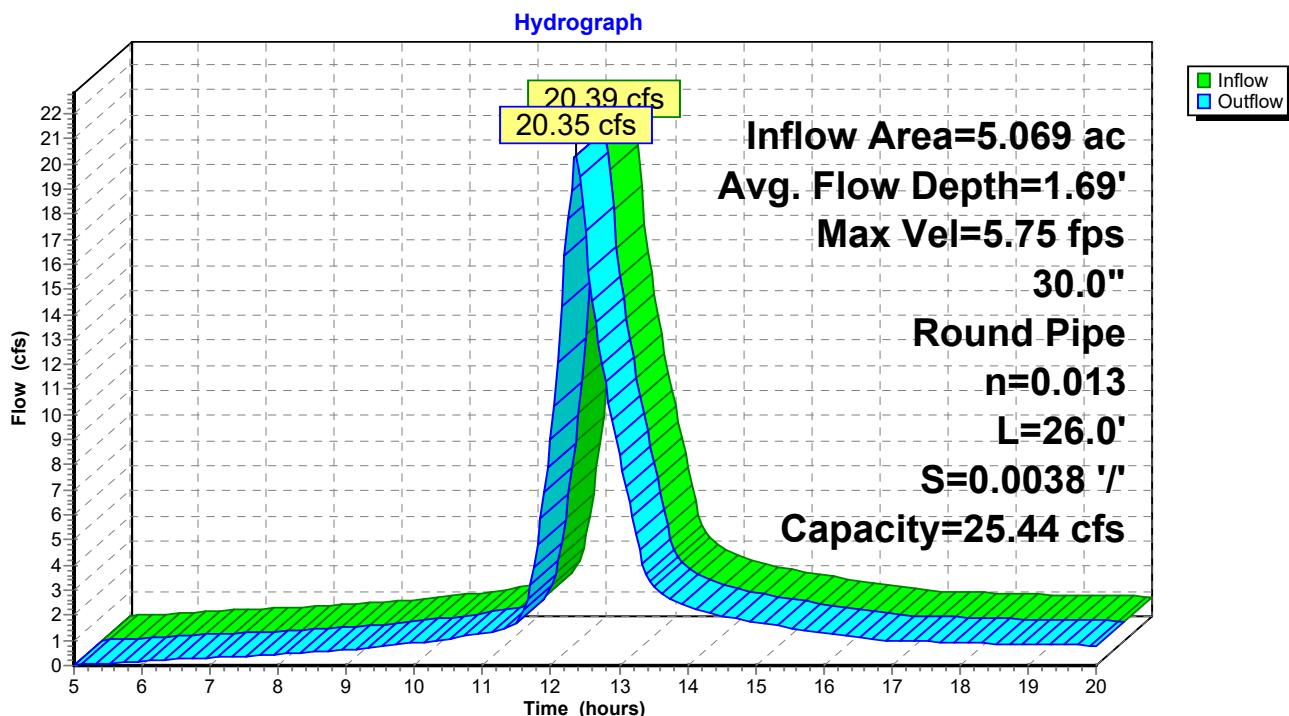
Peak Storage= 322 cf @ 12.27 hrs
 Average Depth at Peak Storage= 0.85'
 Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 21.48 cfs

24.0" Round Pipe
 n= 0.013 Corrugated PE, smooth interior
 Length= 255.0' Slope= 0.0090 '/'
 Inlet Invert= 248.40', Outlet Invert= 246.10'

Reach R1:


Summary for Reach R2:

Inflow Area = 5.069 ac, 64.73% Impervious, Inflow Depth > 6.18" for 100-yr event
 Inflow = 20.39 cfs @ 12.37 hrs, Volume= 2.611 af
 Outflow = 20.35 cfs @ 12.37 hrs, Volume= 2.611 af, Atten= 0%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Max. Velocity= 5.75 fps, Min. Travel Time= 0.1 min
 Avg. Velocity = 2.65 fps, Avg. Travel Time= 0.2 min

Peak Storage= 92 cf @ 12.37 hrs
 Average Depth at Peak Storage= 1.69'
 Bank-Full Depth= 2.50' Flow Area= 4.9 sf, Capacity= 25.44 cfs

30.0" Round Pipe
 n= 0.013 Corrugated PE, smooth interior
 Length= 26.0' Slope= 0.0038 '/
 Inlet Invert= 246.10', Outlet Invert= 246.00'

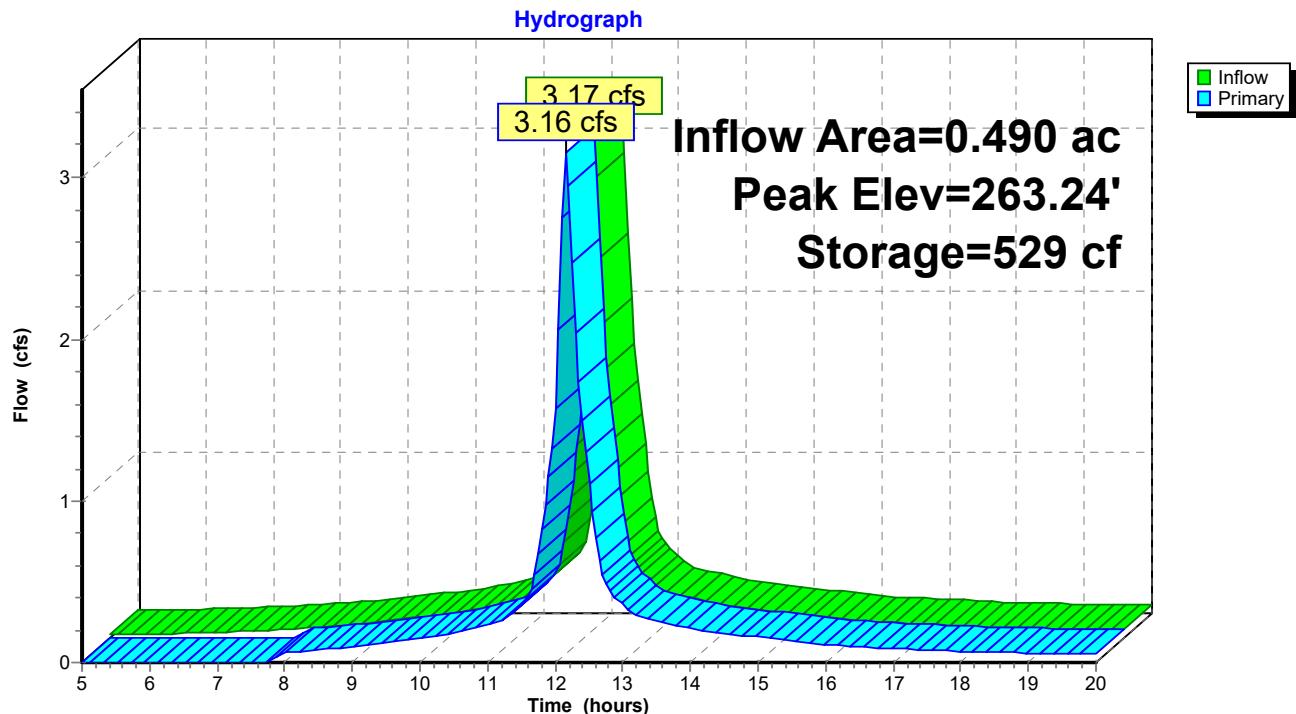
Reach R2:

Summary for Pond B-1: Bioretention

Inflow Area = 0.490 ac, 67.76% Impervious, Inflow Depth > 6.57" for 100-yr event
 Inflow = 3.17 cfs @ 12.15 hrs, Volume= 0.268 af
 Outflow = 3.16 cfs @ 12.16 hrs, Volume= 0.260 af, Atten= 0%, Lag= 0.7 min
 Primary = 3.16 cfs @ 12.16 hrs, Volume= 0.260 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Peak Elev= 263.24' @ 12.16 hrs Surf.Area= 769 sf Storage= 529 cf

Plug-Flow detention time= 24.8 min calculated for 0.260 af (97% of inflow)
 Center-of-Mass det. time= 12.2 min (765.4 - 753.2)


Volume	Invert	Avail.Storage	Storage Description
#1	262.50'	1,160 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
262.50	659	0	0
263.00	727	347	347
264.00	900	814	1,160

Device	Routing	Invert	Outlet Devices
#1	Primary	258.50'	12.0" Round Culvert L= 16.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 258.50' / 258.30' S= 0.0125 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	263.00'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	263.50'	10.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32

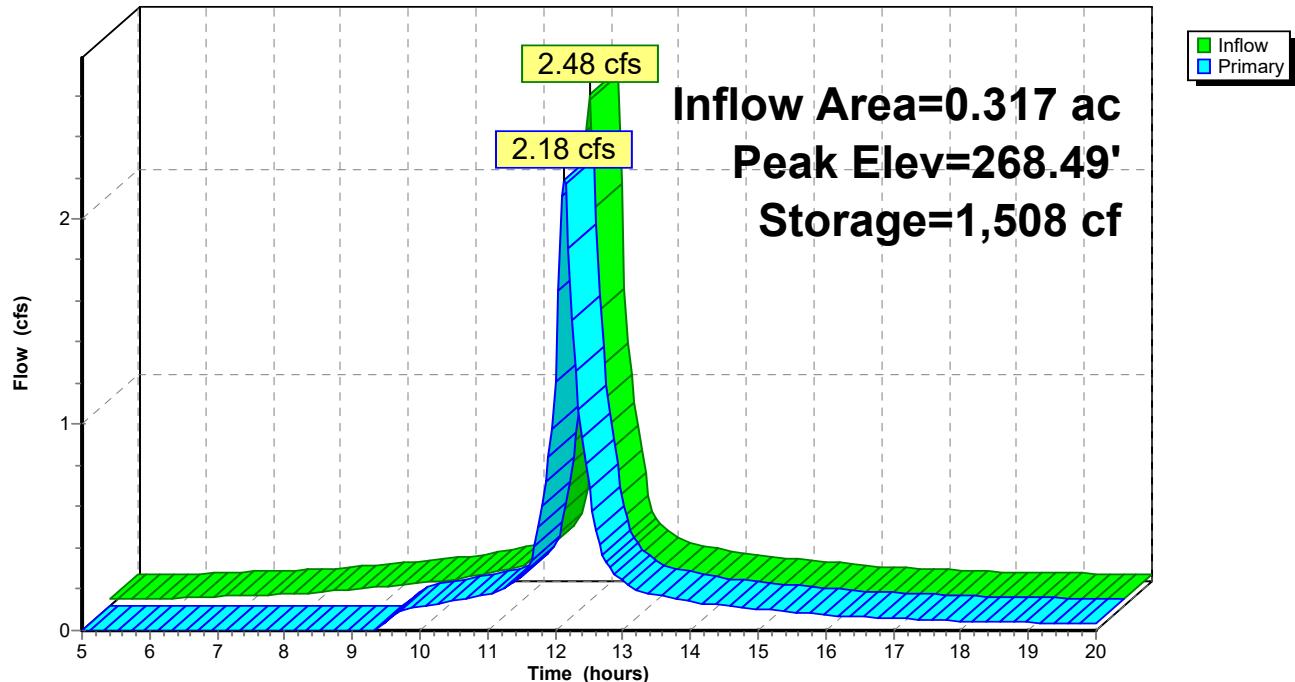
Primary OutFlow Max=3.11 cfs @ 12.16 hrs HW=263.24' (Free Discharge)

↑1=Culvert (Passes 3.11 cfs of 7.79 cfs potential flow)
 ↑2=Orifice/Grate (Weir Controls 3.11 cfs @ 1.61 fps)
 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond B-1: Bioretention

Summary for Pond B-2: Bioretention

Inflow Area = 0.317 ac, 100.00% Impervious, Inflow Depth > 7.29" for 100-yr event
 Inflow = 2.48 cfs @ 12.09 hrs, Volume= 0.193 af
 Outflow = 2.18 cfs @ 12.13 hrs, Volume= 0.171 af, Atten= 12%, Lag= 2.8 min
 Primary = 2.18 cfs @ 12.13 hrs, Volume= 0.171 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Peak Elev= 268.49' @ 12.13 hrs Surf.Area= 3,224 sf Storage= 1,508 cf

Plug-Flow detention time= 76.9 min calculated for 0.170 af (88% of inflow)
 Center-of-Mass det. time= 40.1 min (773.1 - 733.0)

Volume	Invert	Avail.Storage	Storage Description
#1	268.00'	3,220 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
268.00	2,919	0	0
268.50	3,230	1,537	1,537
269.00	3,500	1,683	3,220
Device	Routing	Invert	Outlet Devices
#1	Primary	264.00'	15.0" Round Culvert L= 250.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 264.00' / 252.40' S= 0.0464 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Device 1	268.30'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=2.14 cfs @ 12.13 hrs HW=268.49' (Free Discharge)

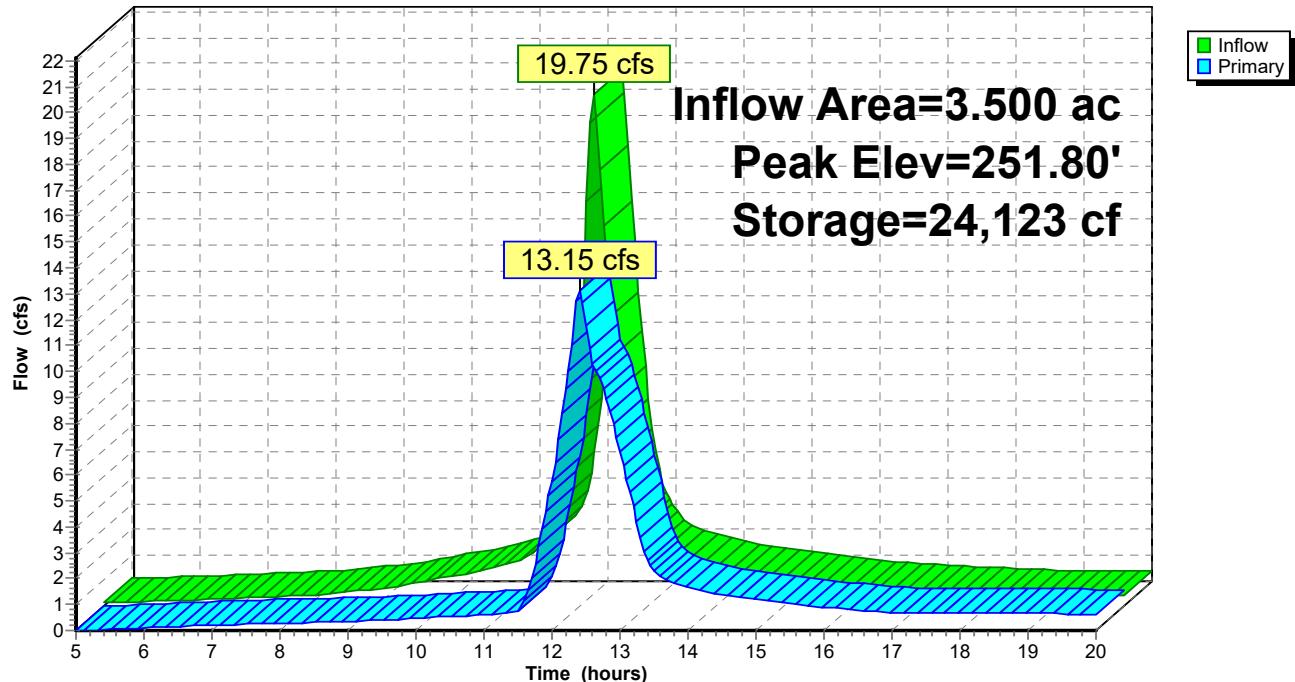
↑ 1=Culvert (Passes 2.14 cfs of 11.61 cfs potential flow)
 ↑ 2=Orifice/Grate (Weir Controls 2.14 cfs @ 1.42 fps)

Pond B-2: Bioretention**Hydrograph**

Summary for Pond P-1: Pond

Inflow Area = 3.500 ac, 68.34% Impervious, Inflow Depth > 6.60" for 100-yr event
 Inflow = 19.75 cfs @ 12.20 hrs, Volume= 1.926 af
 Outflow = 13.15 cfs @ 12.40 hrs, Volume= 1.769 af, Atten= 33%, Lag= 11.7 min
 Primary = 13.15 cfs @ 12.40 hrs, Volume= 1.769 af

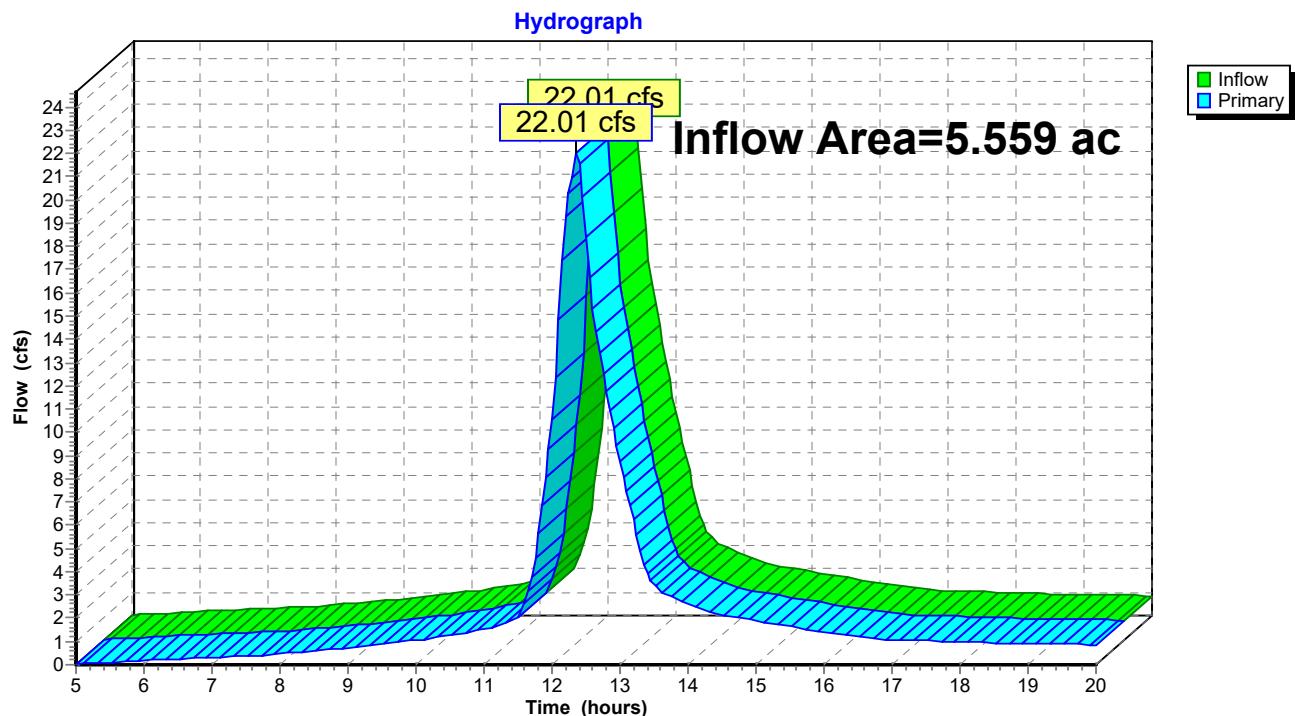
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
 Starting Elev= 246.50' Surf.Area= 1,909 sf Storage= 2,044 cf
 Peak Elev= 251.80' @ 12.40 hrs Surf.Area= 6,810 sf Storage= 24,123 cf (22,079 cf above start)
 Flood Elev= 252.00' Surf.Area= 7,067 sf Storage= 25,423 cf (23,378 cf above start)


Plug-Flow detention time= 83.5 min calculated for 1.716 af (89% of inflow)
 Center-of-Mass det. time= 39.6 min (796.2 - 756.6)

Volume	Invert	Avail.Storage	Storage Description
#1	245.00'	25,423 cf	Custom Stage Data (Prismatic) Listed below
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
245.00	708	0	0
246.00	1,472	1,090	1,090
247.00	2,345	1,909	2,999
248.00	3,175	2,760	5,759
249.00	3,876	3,526	9,284
250.00	4,870	4,373	13,657
251.00	5,797	5,334	18,991
252.00	7,067	6,432	25,423

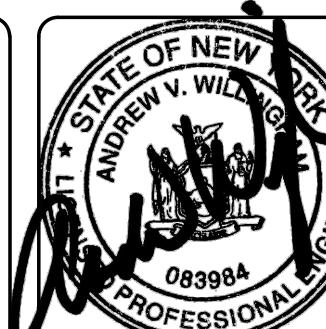
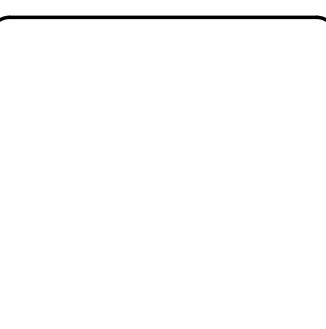
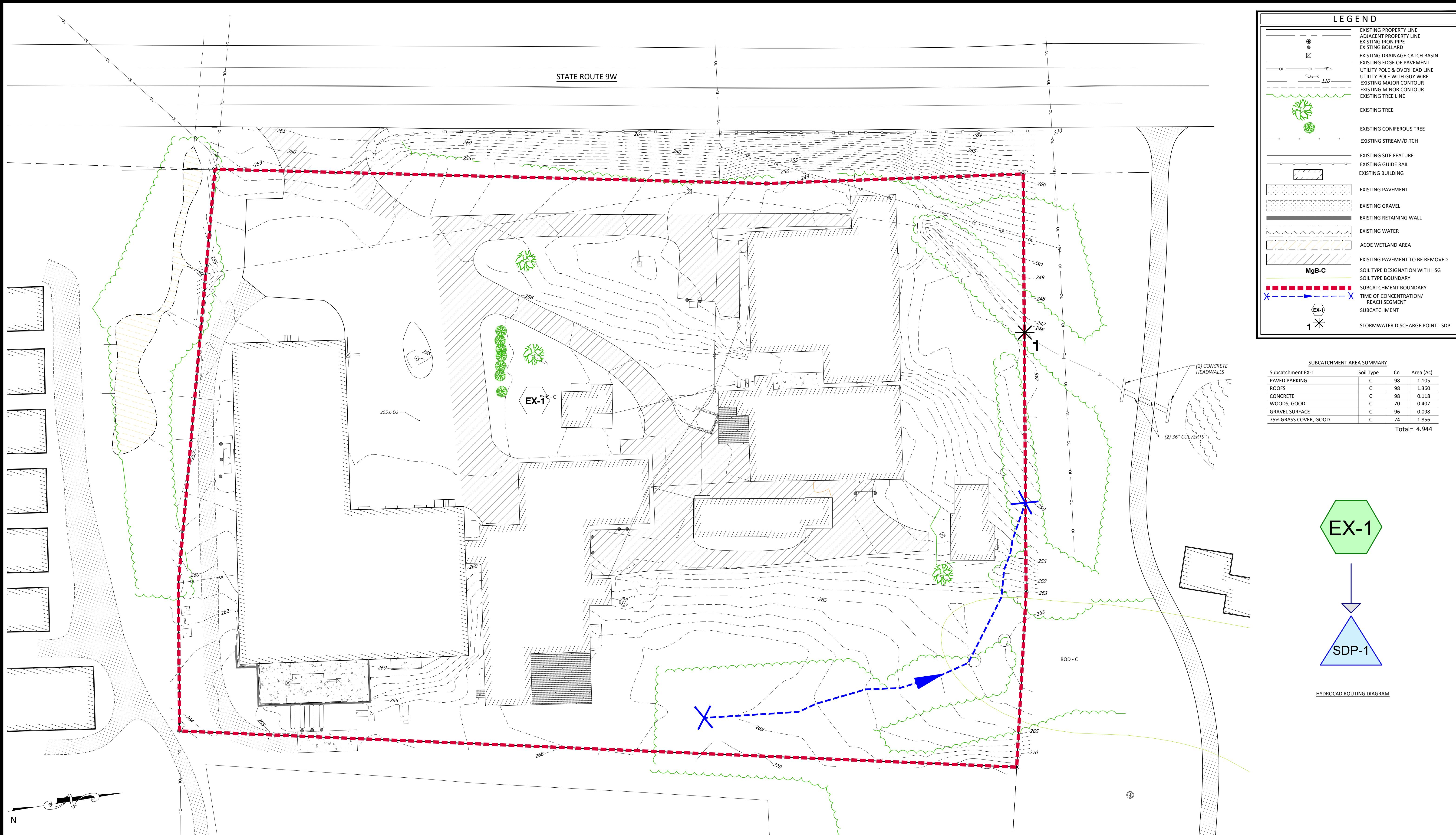
Device	Routing	Invert	Outlet Devices
#1	Primary	246.50'	18.0" Round Culvert L= 78.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 246.50' / 246.10' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf
#2	Device 1	246.50'	4.0" Vert. Orifice/Grate C= 0.600
#3	Primary	251.80'	20.0' long x 4.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32
#4	Device 1	251.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#5	Device 1	249.40'	20.0" W x 5.0" H Vert. Orifice/Grate X 2.00 C= 0.600

Primary OutFlow Max=13.13 cfs @ 12.40 hrs HW=251.80' (Free Discharge)


- ↑ 1=Culvert (Passes 13.13 cfs of 16.98 cfs potential flow)
- ↑ 2=Orifice/Grate (Orifice Controls 0.95 cfs @ 10.91 fps)
- ↑ 4=Orifice/Grate (Weir Controls 2.29 cfs @ 1.45 fps)
- ↑ 5=Orifice/Grate (Orifice Controls 9.89 cfs @ 7.12 fps)
- 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond P-1: Pond**Hydrograph**

Summary for Pond SDP-1:




Inflow Area = 5.559 ac, 64.99% Impervious, Inflow Depth > 6.20" for 100-yr event
Inflow = 22.01 cfs @ 12.36 hrs, Volume= 2.871 af
Primary = 22.01 cfs @ 12.36 hrs, Volume= 2.871 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Pond SDP-1:

APPENDIX H

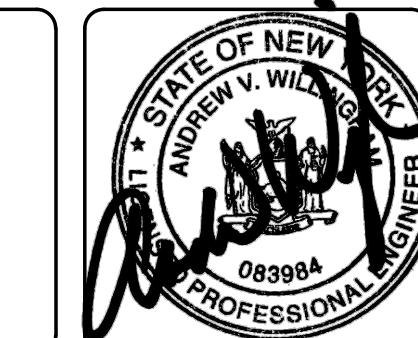
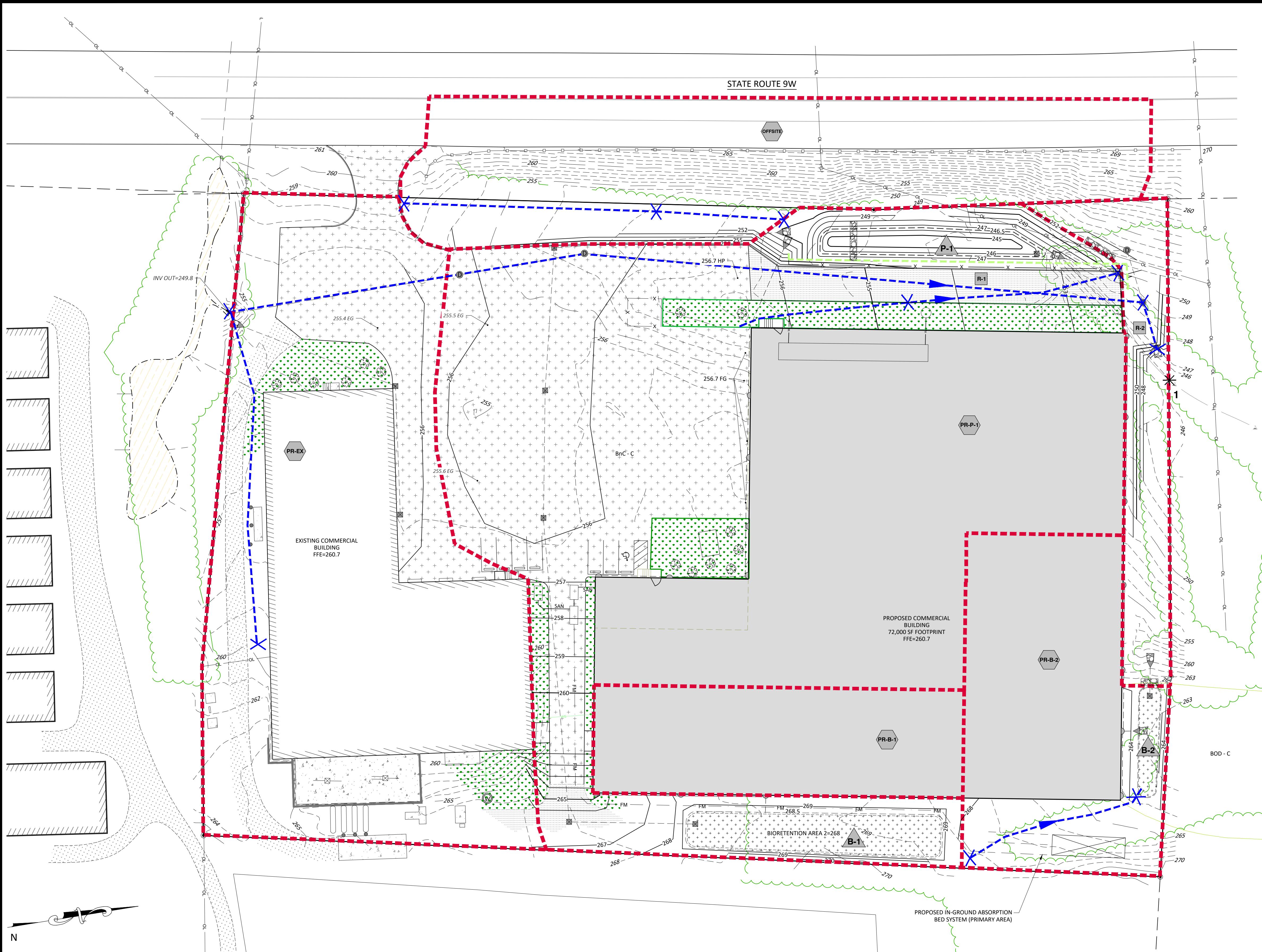
DRAINAGE MAPS

ALL RIGHTS RESERVED. COPY OR REPRODUCTION OF THIS PLAN OR ANY PORTION THEREOF, IS PROHIBITED WITHOUT THE WRITTEN PERMISSION OF THE DESIGN ENGINEER, SURVEYOR, ARCHITECT.

UNDER ARTICLE 145 (ENGINEERING), SECTION 7209 (2) OF THE NEW YORK STATE EDUCATION LAW, IT IS UNLAWFUL TO MAKE ANY ALTERATION TO ANY ITEM ON THIS DRAWING, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED SURVEYOR. IF ANY ITEM IS ALTERED, THE ALTERING ENGINEER AND/OR SURVEYOR SHALL AFFIX TO THE ITEM HIS SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS SIGNATURE AND THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

183 Main Street
New Paltz, New York 12561
T 845.255.0210 F 845.256.8110
www.willinghamengineering.com

REV	DATE	DESCRIPTION



PRE DEVELOPMENT DRAINAGE PLAN

ROYAL ENERGY PROPERTIES, LLC

1666 ROUTE 9W

TOWN OF MARLBOROUGH, ULSTER COUNTY, NEW YORK

DRAWN BY	CHECKED BY
MLT	AVW
DATE	SCALE
09/20/19	1"=30'
PROJECT NO.	
19032	
SHEET NO.	
PRE	

ALL RIGHTS RESERVED. COPY OR REPRODUCTION OF THIS PLAN OR ANY PART THEREOF, IS PROHIBITED WITHOUT THE WRITTEN PERMISSION OF THE DESIGN ENGINEER, SURVEYOR, OR ARCHITECT.

UNDER ARTICLE 145 (ENGINEERING), SECTION 7209 (2) OF THE NEW YORK STATE EDUCATION LAW, IT IS UNLAWFUL TO REMOVE, ALTER OR ALTER ANY ITEM ON THIS DRAWING, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER OR LICENSED SURVEYOR. IF ANY ITEM IS ALTERED, THE ALTERING ENGINEER AND/OR SURVEYOR SHALL AFFIX TO THE ITEM HIS SEAL AND THE NOTATION "ALTERED BY" FOLLOWED BY HIS SIGNATURE AND THE DATE OF SUCH ALTERATION, AND A SPECIFIC DESCRIPTION OF THE ALTERATION.

183 Main Street
New Paltz, New York 12561
T 845.255.0210 F 845.256.8110
www.willinghamengineering.com

REV	DATE	DESCRIPTION
1	10/25/19	REVISIONS PER PLANNING BOARD

POST DEVELOPMENT DRAINAGE PLAN

ROYAL ENERGY PROPERTIES, LLC

1666 ROUTE 9W

TOWN OF MARLBOROUGH, ULSTER COUNTY, NEW YORK

DRAWN BY	CHECKED BY
MLT	AVW
DATE	SCALE
09/20/19	1°=30'
PROJECT NO.	
19032	
SHEET NO.	
POST	

APPENDIX I

STORMWATER CALCULATIONS

WQv and RRv Summary Sheet

Total WQv Required =		6,265	cf
<hr/>			
WQv Provided by:	Bioretention 1 -	4,349	cf
	Bioretention 2 -	936	cf
	Pond Permanent Pool-	2,044	cf
<hr/>			
Total WQv Provided=		7,329	cf
<hr/>			
Total Minimum RRv Required using specific reduction factor=		1,333	cf
<hr/>			
RRv Provided by:	Bioretention 1 (40% of WQv) -	1,545	cf
	Bioretention 2 (40% of WQv) -	374	cf
<hr/>			
Total RRv Provided =		1,919	cf

Redevelopment Calculations

Existing Impervious to be removed and redeveloped

Total 1.51 Ac

Redeveloped impervious surface requiring

25% WQv treatment (no RRv requirement for redevelopment)

1.51 ac

P= 1.4

Rv= 0.05 + 0.009 (I)

Rv= 0.95

I= Impervious Cover (percent)

I= 100%

A= 1.51

WQv={[P(Rv)(A)]/12} * 25% reduction for redevelopment

WQv= 1,823 cf for portion of site to be redeveloped

Total WQv required for redevelopment portion of site

Total WQv = 1,823 cf

Note - RRv is not required for areas of redevelopment

New Impervious Surfaces

Total 0.92 Ac

P= 1.4

Rv= 0.05 + 0.009 (I)

Rv= 0.95

I= Impervious Cover (percent)

I= 100%

A= 0.92

S= 0.3

WQv={[P(Rv)(A)]/12}

WQv= 4,442 cf for new impervious surfaces

RRv={[P(Rv)(A)(S)]/12}

RRv= 1,333 cf with specific reduction factor

*Note - RRv not required for Redeveloped Impervious Surfaces

Total WQv= 6,265 cf New and Redevelopment impervious surfaces