

United States
Department of
Agriculture

NRCS

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Ulster County, New York

Highland Solar

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (<http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/>) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (<https://offices.sc.egov.usda.gov/locator/app?agency=nrcs>) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface.....	2
How Soil Surveys Are Made.....	5
Soil Map.....	8
Soil Map.....	9
Legend.....	10
Map Unit Legend.....	11
Map Unit Descriptions.....	11
Ulster County, New York.....	14
At—Atherton silt loam.....	14
BgC—Bath gravelly silt loam, 8 to 15 percent slopes.....	15
BgD—Bath gravelly silt loam, 15 to 25 percent slopes.....	16
BnC—Bath-Nassau complex, 8 to 25 percent slopes.....	18
BOD—Bath-Nassau-Rock outcrop complex, hilly.....	20
Cd—Canandaigua silt loam, till substratum.....	22
CgA—Castile gravelly silt loam, 0 to 3 percent slopes.....	23
MdB—Mardin gravelly silt loam, 3 to 8 percent slopes.....	25
MgB—Mardin-Nassau complex, 3 to 8 percent slopes.....	26
VoB—Volusia gravelly silt loam, 3 to 8 percent slopes.....	28
VoC—Volusia gravelly silt loam, 8 to 15 percent slopes.....	30
Soil Information for All Uses.....	32
Suitabilities and Limitations for Use.....	32
Land Classifications.....	32
Farmland Classification (Farmland Classification).....	32
Soil Properties and Qualities.....	39
Soil Qualities and Features.....	39
Depth to Bedrock (Depth to Bedrock).....	39
Hydrologic Soil Group (Hydrologic Soil Group).....	44
References.....	50

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units).

Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

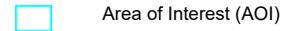
Soil Map



The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report
Soil Map

Map Scale: 1:6,590 if printed on A portrait (8.5" x 11") sheet.



0 300 600 1200 1800 Feet

Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 18N WGS84

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

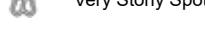
Saline Spot

Sandy Spot

Severely Eroded Spot

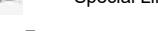
Sinkhole

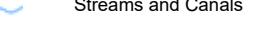
Slide or Slip



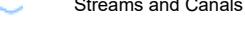
Sodic Spot

Spoil Area


Stony Spot


Very Stony Spot

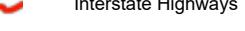
Wet Spot



Other

Special Line Features

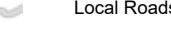
Water Features



Streams and Canals

Transportation

Rails


Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Ulster County, New York

Survey Area Data: Version 21, Sep 10, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 21, 2022—Oct 27, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
At	Atherton silt loam	0.2	0.2%
BgC	Bath gravelly silt loam, 8 to 15 percent slopes	15.0	18.6%
BgD	Bath gravelly silt loam, 15 to 25 percent slopes	13.0	16.1%
BnC	Bath-Nassau complex, 8 to 25 percent slopes	6.6	8.3%
BOD	Bath-Nassau-Rock outcrop complex, hilly	2.4	3.0%
Cd	Canandaigua silt loam, till substratum	1.3	1.7%
CgA	Castile gravelly silt loam, 0 to 3 percent slopes	0.0	0.0%
MdB	Mardin gravelly silt loam, 3 to 8 percent slopes	9.4	11.7%
MgB	Mardin-Nassau complex, 3 to 8 percent slopes	2.7	3.4%
VoB	Volusia gravelly silt loam, 3 to 8 percent slopes	24.8	30.8%
VoC	Volusia gravelly silt loam, 8 to 15 percent slopes	5.1	6.3%
Totals for Area of Interest		80.4	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a

particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Custom Soil Resource Report

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Ulster County, New York

At—Atherton silt loam

Map Unit Setting

National map unit symbol: 9xfl

Elevation: 50 to 1,500 feet

Mean annual precipitation: 41 to 62 inches

Mean annual air temperature: 41 to 50 degrees F

Frost-free period: 110 to 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Atherton and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Atherton

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Tread

Down-slope shape: Concave

Across-slope shape: Concave

Parent material: Loamy glacioluvial deposits over stratified deposits

Typical profile

H1 - 0 to 7 inches: silt loam

H2 - 7 to 19 inches: silt loam

H3 - 19 to 34 inches: gravelly loam

H4 - 34 to 65 inches: stratified very gravelly sandy loam to sand

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None

Frequency of ponding: Occasional

Calcium carbonate, maximum content: 1 percent

Available water supply, 0 to 60 inches: Moderate (about 6.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D

Ecological site: F140XY016NY - Mineral Wetlands

Hydric soil rating: Yes

Minor Components

Canandaigua

Percent of map unit: 5 percent

Landform: Depressions

Hydric soil rating: Yes

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

Raynham

Percent of map unit: 5 percent

Hydric soil rating: No

Lamson

Percent of map unit: 5 percent

Landform: Depressions

Hydric soil rating: Yes

BgC—Bath gravelly silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9xfq

Elevation: 800 to 1,800 feet

Mean annual precipitation: 41 to 62 inches

Mean annual air temperature: 41 to 50 degrees F

Frost-free period: 110 to 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Bath and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bath

Setting

Landform: Till plains, hills, drumlinoid ridges

Landform position (two-dimensional): Shoulder

Landform position (three-dimensional): Crest

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Loamy till derived mainly from gray and brown siltstone, sandstone, and shale

Typical profile

H1 - 0 to 6 inches: gravelly silt loam

H2 - 6 to 28 inches: gravelly loam

H3 - 28 to 55 inches: very gravelly loam

H4 - 55 to 65 inches: very gravelly loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 26 to 38 inches to fragipan

Drainage class: Well drained

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 37 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: C

Ecological site: F140XY030NY - Well Drained Dense Till

Hydric soil rating: No

Minor Components

Mardin

Percent of map unit: 5 percent

Hydric soil rating: No

Lordstown

Percent of map unit: 5 percent

Hydric soil rating: No

Volusia

Percent of map unit: 5 percent

Hydric soil rating: No

Manlius

Percent of map unit: 5 percent

Hydric soil rating: No

BgD—Bath gravelly silt loam, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 9xfr

Elevation: 800 to 1,800 feet

Mean annual precipitation: 41 to 62 inches

Mean annual air temperature: 41 to 50 degrees F

Frost-free period: 110 to 200 days

Farmland classification: Not prime farmland

Map Unit Composition

Bath and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bath

Setting

Landform: Till plains, hills, drumlinoid ridges

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Loamy till derived mainly from gray and brown siltstone, sandstone, and shale

Typical profile

H1 - 0 to 6 inches: gravelly silt loam

H2 - 6 to 28 inches: gravelly loam

H3 - 28 to 55 inches: very gravelly loam

H4 - 55 to 65 inches: very gravelly loam

Properties and qualities

Slope: 15 to 25 percent

Depth to restrictive feature: 26 to 38 inches to fragipan

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 37 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: F140XY030NY - Well Drained Dense Till

Hydric soil rating: No

Minor Components

Mardin

Percent of map unit: 5 percent

Hydric soil rating: No

Manlius

Percent of map unit: 5 percent

Hydric soil rating: No

Volusia

Percent of map unit: 5 percent

Hydric soil rating: No

Lordstown

Percent of map unit: 5 percent

Hydric soil rating: No

Rock outcrop

Percent of map unit: 5 percent

Hydric soil rating: Unranked

BnC—Bath-Nassau complex, 8 to 25 percent slopes

Map Unit Setting

National map unit symbol: 9xft
Elevation: 600 to 1,800 feet
Mean annual precipitation: 41 to 62 inches
Mean annual air temperature: 41 to 50 degrees F
Frost-free period: 110 to 200 days
Farmland classification: Not prime farmland

Map Unit Composition

Bath and similar soils: 50 percent
Nassau and similar soils: 30 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bath

Setting

Landform: Till plains, hills, drumlinoid ridges
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy till derived mainly from gray and brown siltstone, sandstone, and shale

Typical profile

H1 - 0 to 6 inches: gravelly silt loam
H2 - 6 to 28 inches: gravelly loam
H3 - 28 to 48 inches: very gravelly loam
H4 - 48 to 52 inches: bedrock

Properties and qualities

Slope: 8 to 25 percent
Depth to restrictive feature: 26 to 38 inches to fragipan; 40 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 24 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: C
Ecological site: F140XY030NY - Well Drained Dense Till

Hydric soil rating: No

Description of Nassau

Setting

Landform: Till plains, ridges, benches

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope

Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Channery loamy till derived mainly from local slate or shale

Typical profile

H1 - 0 to 6 inches: channery silt loam

H2 - 6 to 16 inches: very channery silt loam

H3 - 16 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 25 percent

Depth to restrictive feature: 10 to 20 inches to lithic bedrock

Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: D

Ecological site: F144AY033MA - Shallow Dry Till Uplands

Hydric soil rating: No

Minor Components

Hudson

Percent of map unit: 5 percent

Hydric soil rating: No

Cambridge

Percent of map unit: 5 percent

Hydric soil rating: No

Volusia

Percent of map unit: 5 percent

Hydric soil rating: No

Manlius

Percent of map unit: 5 percent

Hydric soil rating: No

BOD—Bath-Nassau-Rock outcrop complex, hilly

Map Unit Setting

National map unit symbol: 9xfv
Elevation: 600 to 1,800 feet
Mean annual precipitation: 41 to 62 inches
Mean annual air temperature: 41 to 50 degrees F
Frost-free period: 110 to 200 days
Farmland classification: Not prime farmland

Map Unit Composition

Bath and similar soils: 40 percent
Nassau and similar soils: 25 percent
Rock outcrop: 15 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bath

Setting

Landform: Till plains, hills, drumlinoid ridges
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy till derived mainly from gray and brown siltstone, sandstone, and shale

Typical profile

H1 - 0 to 6 inches: gravelly silt loam
H2 - 6 to 28 inches: gravelly loam
H3 - 28 to 48 inches: very gravelly loam
H4 - 48 to 52 inches: bedrock

Properties and qualities

Slope: 10 to 25 percent
Depth to restrictive feature: 26 to 38 inches to fragipan; 40 to 80 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 24 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C
Ecological site: F140XY030NY - Well Drained Dense Till
Hydric soil rating: No

Description of Nassau

Setting

Landform: Till plains, ridges, benches
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Channery loamy till derived mainly from local slate or shale

Typical profile

H1 - 0 to 6 inches: channery silt loam
H2 - 6 to 16 inches: very channery silt loam
H3 - 16 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 10 to 25 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s
Hydrologic Soil Group: D
Ecological site: F144AY033MA - Shallow Dry Till Uplands
Hydric soil rating: No

Description of Rock Outcrop

Typical profile

H1 - 0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 10 to 25 percent
Depth to restrictive feature: 0 inches to lithic bedrock
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6s
Hydric soil rating: Unranked

Minor Components

Manlius

Percent of map unit: 5 percent
Hydric soil rating: No

Mardin

Percent of map unit: 5 percent
Hydric soil rating: No

Hudson

Percent of map unit: 5 percent
Hydric soil rating: No

Volusia

Percent of map unit: 5 percent
Hydric soil rating: No

Cd—Canandaigua silt loam, till substratum

Map Unit Setting

National map unit symbol: 9xg0
Elevation: 100 to 1,200 feet
Mean annual precipitation: 41 to 62 inches
Mean annual air temperature: 41 to 50 degrees F
Frost-free period: 110 to 200 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Canandaigua and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canandaigua

Setting

Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Concave
Across-slope shape: Concave
Parent material: Silty and clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: silt loam
H2 - 9 to 37 inches: silt loam
H3 - 37 to 40 inches: silt loam
H4 - 40 to 60 inches: gravelly silt loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)

Depth to water table: About 0 inches

Frequency of flooding: None

Frequency of ponding: Frequent

Calcium carbonate, maximum content: 15 percent

Available water supply, 0 to 60 inches: High (about 10.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D

Ecological site: F101XY010NY - Wet Lake Plain Depression

Hydric soil rating: Yes

Minor Components

Lyons

Percent of map unit: 5 percent

Landform: Depressions

Hydric soil rating: Yes

Lamson

Percent of map unit: 5 percent

Landform: Depressions

Hydric soil rating: Yes

Atherton

Percent of map unit: 5 percent

Landform: Depressions

Hydric soil rating: Yes

Raynham

Percent of map unit: 5 percent

Hydric soil rating: No

CgA—Castile gravelly silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9xg3

Elevation: 160 to 1,970 feet

Mean annual precipitation: 41 to 62 inches

Mean annual air temperature: 41 to 50 degrees F

Frost-free period: 110 to 200 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Castile and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Castile

Setting

Landform: Terraces, valley trains

Landform position (two-dimensional): Summit

Landform position (three-dimensional): Tread

Down-slope shape: Concave

Across-slope shape: Convex

Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly silt loam

H2 - 8 to 19 inches: gravelly loam

H3 - 19 to 28 inches: very gravelly sandy loam

H4 - 28 to 60 inches: stratified very gravelly sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 5.95 in/hr)

Depth to water table: About 18 to 24 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 2.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: A/D

Ecological site: F140XY022NY - Moist Outwash

Hydric soil rating: No

Minor Components

Chenango

Percent of map unit: 5 percent

Hydric soil rating: No

Tunkhannock

Percent of map unit: 5 percent

Hydric soil rating: No

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

Hoosic

Percent of map unit: 5 percent

Hydric soil rating: No

MdB—Mardin gravelly silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2v30j
Elevation: 330 to 2,460 feet
Mean annual precipitation: 31 to 70 inches
Mean annual air temperature: 39 to 52 degrees F
Frost-free period: 105 to 180 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Mardin and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mardin

Setting

Landform: Mountains, hills
Landform position (two-dimensional): Summit, shoulder
Landform position (three-dimensional): Interfluve, side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy till

Typical profile

Ap - 0 to 8 inches: gravelly silt loam
Bw - 8 to 15 inches: gravelly silt loam
E - 15 to 20 inches: gravelly silt loam
Bx - 20 to 72 inches: gravelly silt loam

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 14 to 26 inches to fragipan
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 13 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: D
Ecological site: F144AY008CT - Moist Till Uplands
Hydric soil rating: No

Minor Components

Lordstown

Percent of map unit: 5 percent

Landform: Hills, mountains

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Mountaintop, interfluve, crest

Down-slope shape: Convex

Across-slope shape: Convex

Hydric soil rating: No

Bath

Percent of map unit: 5 percent

Landform: Mountains, hills

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Concave

Across-slope shape: Linear

Hydric soil rating: No

Volusia

Percent of map unit: 5 percent

Landform: Mountains, hills

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve, base slope, side slope

Down-slope shape: Concave

Across-slope shape: Linear

Hydric soil rating: No

MgB—Mardin-Nassau complex, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2v30k

Elevation: 330 to 2,460 feet

Mean annual precipitation: 31 to 70 inches

Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Mardin and similar soils: 55 percent

Nassau and similar soils: 25 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mardin

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Summit, shoulder

Landform position (three-dimensional): Interfluve, side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Loamy till

Typical profile

Ap - 0 to 8 inches: gravelly silt loam
Bw - 8 to 15 inches: gravelly silt loam
E - 15 to 20 inches: gravelly silt loam
Bx - 20 to 72 inches: gravelly silt loam

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 14 to 26 inches to fragipan
Drainage class: Moderately well drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 13 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: D
Ecological site: F144AY033MA - Shallow Dry Till Uplands
Hydric soil rating: No

Description of Nassau

Setting

Landform: Till plains, ridges, benches
Landform position (two-dimensional): Summit, footslope
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex, concave
Across-slope shape: Convex, linear
Parent material: Channery loamy till derived mainly from local slate or shale

Typical profile

H1 - 0 to 6 inches: channery silt loam
H2 - 6 to 16 inches: very channery silt loam
H3 - 16 to 20 inches: unweathered bedrock

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Drainage class: Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: D

Ecological site: F144AY033MA - Shallow Dry Till Uplands

Hydric soil rating: No

Minor Components

Manlius

Percent of map unit: 5 percent

Landform: Till plains, ridges, benches

Landform position (two-dimensional): Shoulder, footslope

Landform position (three-dimensional): Crest, side slope

Down-slope shape: Convex, concave

Across-slope shape: Convex, linear

Hydric soil rating: No

Volusia

Percent of map unit: 5 percent

Landform: Mountains, hills

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve, base slope, side slope

Down-slope shape: Concave

Across-slope shape: Linear

Hydric soil rating: No

Churchville

Percent of map unit: 5 percent

Landform: Till plains, lake plains

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Side slope, base slope, tread

Down-slope shape: Concave

Across-slope shape: Linear

Hydric soil rating: No

Schoharie

Percent of map unit: 5 percent

Landform: Lake plains

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Side slope, tread

Down-slope shape: Concave

Across-slope shape: Convex, linear

Hydric soil rating: No

VoB—Volusia gravelly silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2srf6

Elevation: 330 to 2,460 feet

Mean annual precipitation: 31 to 70 inches

Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Volusia and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Volusia

Setting

Landform: Mountains, hills

Landform position (two-dimensional): Summit, footslope

Landform position (three-dimensional): Interfluve, base slope, side slope

Down-slope shape: Concave

Across-slope shape: Linear

Parent material: Loamy till derived from interbedded sedimentary rock

Typical profile

Ap - 0 to 8 inches: gravelly silt loam

Bw - 8 to 15 inches: gravelly silt loam

E - 15 to 19 inches: gravelly silt loam

Bx - 19 to 58 inches: gravelly silt loam

C - 58 to 70 inches: gravelly silt loam

Properties and qualities

Slope: 3 to 8 percent

Surface area covered with cobbles, stones or boulders: 0.0 percent

Depth to restrictive feature: 10 to 22 inches to fragipan

Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: D

Ecological site: F140XY028NY - Moist Till Upland

Hydric soil rating: No

Minor Components

Mardin

Percent of map unit: 5 percent

Landform: Mountains, hills

Landform position (two-dimensional): Shoulder, backslope

Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: No

Chippewa

Percent of map unit: 5 percent
Landform: Depressions
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

VoC—Volusia gravelly silt loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2srf7
Elevation: 330 to 2,460 feet
Mean annual precipitation: 31 to 70 inches
Mean annual air temperature: 39 to 52 degrees F
Frost-free period: 105 to 180 days
Farmland classification: Farmland of statewide importance

Map Unit Composition

Volusia and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Volusia

Setting

Landform: Mountains, hills
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Interfluve, side slope
Down-slope shape: Concave
Across-slope shape: Linear
Parent material: Loamy till derived from interbedded sedimentary rock

Typical profile

Ap - 0 to 8 inches: gravelly silt loam
Bw - 8 to 15 inches: gravelly silt loam
E - 15 to 19 inches: gravelly silt loam
Bx - 19 to 58 inches: gravelly silt loam
C - 58 to 70 inches: gravelly silt loam

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: 10 to 22 inches to fragipan
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: D

Ecological site: F140XY028NY - Moist Till Upland

Hydric soil rating: No

Minor Components

Mardin

Percent of map unit: 6 percent

Landform: Mountains, hills

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Head slope, side slope

Down-slope shape: Concave

Across-slope shape: Linear

Hydric soil rating: No

Chippewa

Percent of map unit: 4 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope

Landform position (three-dimensional): Base slope

Down-slope shape: Concave

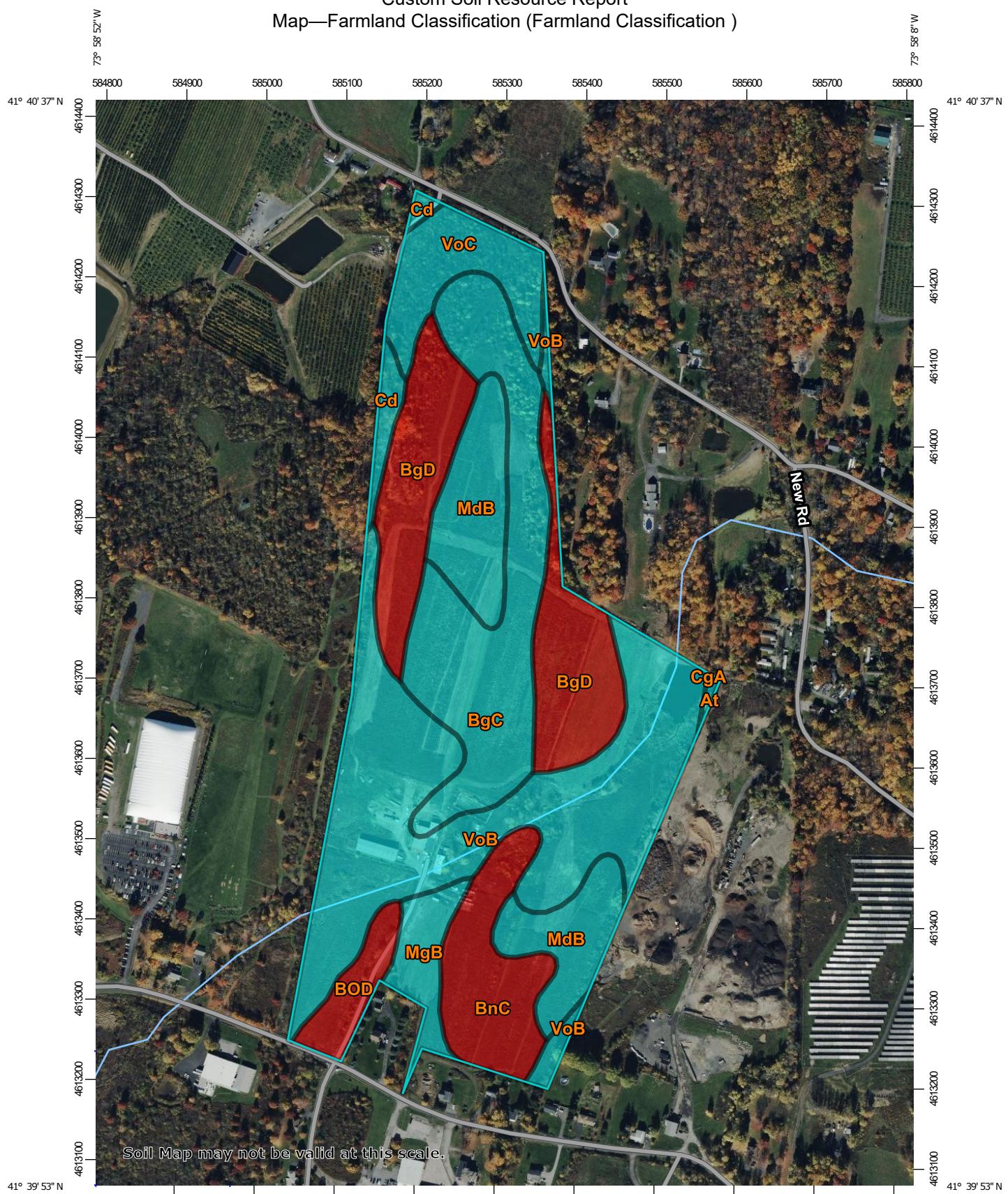
Across-slope shape: Concave

Hydric soil rating: Yes

Soil Information for All Uses

Suitabilities and Limitations for Use

The Suitabilities and Limitations for Use section includes various soil interpretations displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each interpretation.


Land Classifications

Land Classifications are specified land use and management groupings that are assigned to soil areas because combinations of soil have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. Example classifications include ecological site classification, farmland classification, irrigated and nonirrigated land capability classification, and hydric rating.

Farmland Classification (Farmland Classification)

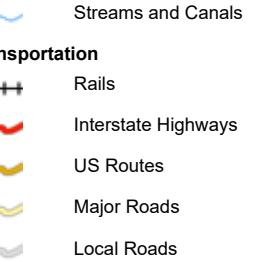
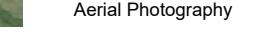
Farmland classification identifies map units as prime farmland, farmland of statewide importance, farmland of local importance, or unique farmland. It identifies the location and extent of the soils that are best suited to food, feed, fiber, forage, and oilseed crops. NRCS policy and procedures on prime and unique farmlands are published in the "Federal Register," Vol. 43, No. 21, January 31, 1978.

Custom Soil Resource Report
Map—Farmland Classification (Farmland Classification)

Map Scale: 1:6,590 if printed on A portrait (8.5" x 11") sheet.

0 50 100 200 300 Meters

0 300 600 1200 1800 Feet



Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 18N WGS84

Custom Soil Resource Report

Prime farmland if subsoiled, completely removing the root inhibiting soil layer	Farmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing season	Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium	Farmland of unique importance	Prime farmland if subsoiled, completely removing the root inhibiting soil layer
Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60	Farmland of statewide importance, if irrigated and drained	Farmland of statewide importance, if drained or either protected from flooding or not frequently flooded during the growing season	Not rated or not available	Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60
Prime farmland if irrigated and reclaimed of excess salts and sodium	Farmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing season	Farmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing season	Not prime farmland	Prime farmland if irrigated and reclaimed of excess salts and sodium
Farmland of statewide importance	Farmland of statewide importance, if subsoiled, completely removing the root inhibiting soil layer	Farmland of statewide importance, if warm enough	All areas are prime farmland	Farmland of statewide importance
Farmland of statewide importance, if drained	Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60	Farmland of statewide importance, if irrigated and thawed	Prime farmland if irrigated and drained	Farmland of statewide importance, if drained
Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing season	Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60	Farmland of local importance	Prime farmland if irrigated and either protected from flooding or not frequently flooded during the growing season	Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing season
Farmland of statewide importance, if irrigated		Farmland of local importance, if irrigated	Prime farmland if irrigated and drained	Farmland of statewide importance, if irrigated

Custom Soil Resource Report

<ul style="list-style-type: none"> ■ Farmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing season ■ Farmland of statewide importance, if irrigated and drained ■ Farmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing season ■ Farmland of statewide importance, if subsoiled, completely removing the root inhibiting soil layer ■ Farmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60 	<ul style="list-style-type: none"> ■ Farmland of statewide importance, if irrigated and reclaimed of excess salts and sodium ■ Farmland of statewide importance, if drained or either protected from flooding or not frequently flooded during the growing season ■ Farmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing season ■ Farmland of statewide importance, if warm enough ■ Farmland of statewide importance, if thawed ■ Farmland of local importance ■ Farmland of local importance, if irrigated 	<ul style="list-style-type: none"> ■ Farmland of unique importance ■ Not rated or not available <p>Water Features</p> <p>Transportation</p> <ul style="list-style-type: none"> ■ Rail ■ Interstate Highways ■ US Routes ■ Major Roads ■ Local Roads <p>Background</p>	<p>The soil surveys that comprise your AOI were mapped at 1:15,800.</p> <div style="border: 1px solid black; padding: 5px; margin-top: 10px;"> <p>Warning: Soil Map may not be valid at this scale.</p> <p>Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.</p> </div> <p>Please rely on the bar scale on each map sheet for map measurements.</p> <p>Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov/ Coordinate System: Web Mercator (EPSG:3857)</p> <p>Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.</p> <p>This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.</p> <p>Soil Survey Area: Ulster County, New York Survey Area Data: Version 21, Sep 10, 2022</p> <p>Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.</p> <p>Date(s) aerial images were photographed: Oct 21, 2022—Oct 27, 2022</p> <p>The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.</p>
---	--	--	--

Table—Farmland Classification (Farmland Classification)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
At	Atherton silt loam	Farmland of statewide importance	0.2	0.2%
BgC	Bath gravelly silt loam, 8 to 15 percent slopes	Farmland of statewide importance	15.0	18.6%
BgD	Bath gravelly silt loam, 15 to 25 percent slopes	Not prime farmland	13.0	16.1%
BnC	Bath-Nassau complex, 8 to 25 percent slopes	Not prime farmland	6.6	8.3%
BOD	Bath-Nassau-Rock outcrop complex, hilly	Not prime farmland	2.4	3.0%
Cd	Canandaigua silt loam, till substratum	Farmland of statewide importance	1.3	1.7%
CgA	Castile gravelly silt loam, 0 to 3 percent slopes	All areas are prime farmland	0.0	0.0%
MdB	Mardin gravelly silt loam, 3 to 8 percent slopes	Farmland of statewide importance	9.4	11.7%
MgB	Mardin-Nassau complex, 3 to 8 percent slopes	Farmland of statewide importance	2.7	3.4%
VoB	Volusia gravelly silt loam, 3 to 8 percent slopes	Farmland of statewide importance	24.8	30.8%
VoC	Volusia gravelly silt loam, 8 to 15 percent slopes	Farmland of statewide importance	5.1	6.3%
Totals for Area of Interest			80.4	100.0%

Rating Options—Farmland Classification (Farmland Classification)

Aggregation Method: No Aggregation Necessary

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component

typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The majority of soil attributes are associated with a component of a map unit, and such an attribute has to be aggregated to the map unit level before a thematic map can be rendered. Map units, however, also have their own attributes. An attribute of a map unit does not have to be aggregated in order to render a corresponding thematic map. Therefore, the "aggregation method" for any attribute of a map unit is referred to as "No Aggregation Necessary".

Tie-break Rule: Lower

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

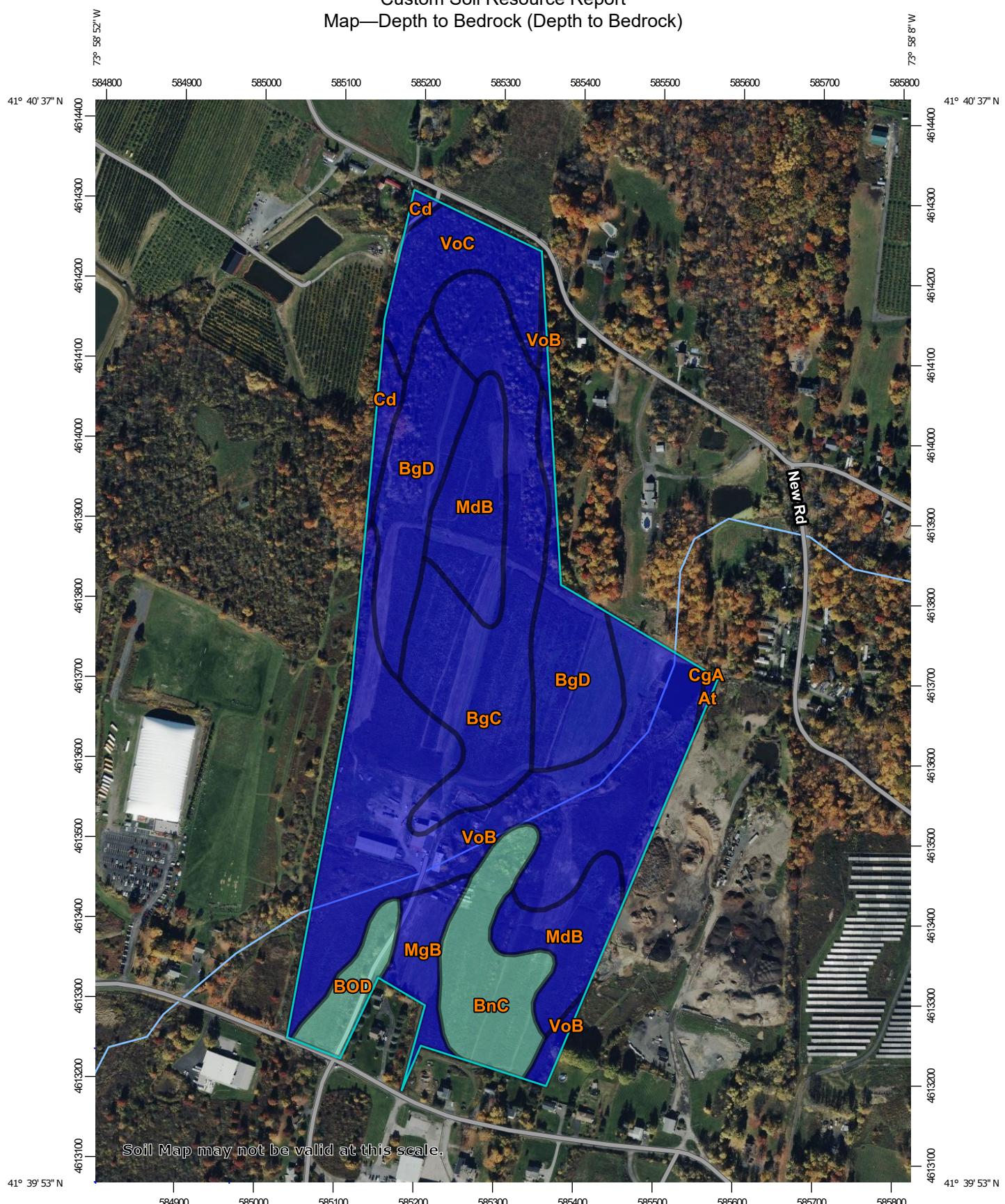
Depth to Bedrock (Depth to Bedrock)

The term bedrock in soil survey refers to a continuous root and water restrictive layer of rock that occurs within the soil profile.

There are many types of restrictions that can occur within the soil profile but this theme only includes the three restrictions that use the term bedrock. These are:

- 1) Lithic Bedrock
- 2) Paralithic Bedrock
- 3) Densic Bedrock

Lithic bedrock and paralithic bedrock are comprised of igneous, metamorphic, and sedimentary rocks, which are coherent and consolidated into rock through pressure, heat, cementation, or fusion. Lithic bedrock represents the hardest type of bedrock, with a hardness of strongly coherent to indurated. Paralithic bedrock has a hardness of extremely weakly coherent to moderately coherent. It can occur as a thin layer of weathered bedrock above harder lithic bedrock. Paralithic bedrock can also be much thicker, extending well below the soil profile.


Densic bedrock represents a unique kind of bedrock recognized within the soil survey. It is non-coherent and consolidated, dense root restrictive material, formed by pressure, heat, and dewatering of earth materials or sediments. Densic bedrock differs from densic materials, which formed under the compaction of glaciers, mudflows, and or human-caused compaction.

Custom Soil Resource Report

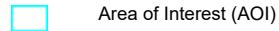
If more than one type of bedrock is described for an individual soil type, the depth to the shallowest one is given. If no bedrock is described in a map unit, it is represented by the "greater than 200" depth class.

Depth to bedrock is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Custom Soil Resource Report Map—Depth to Bedrock (Depth to Bedrock)

Soil Map may not be valid at this scale.

Map Scale: 1:6,590 if printed on A portrait (8.5" x 11") sheet.


A horizontal scale bar with a black segment on the left and a white segment on the right. The text 'Meters' is at the right end. Numerical values 0, 50, 100, 200, and 300 are placed below the bar.

0 300 600 1200 1800
Map projection: Web Mercator. Corner coordinates: WGS84. Edge ticks: UTM Zone 18N WGS84

41

MAP LEGEND

Area of Interest (AOI)

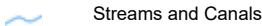
Area of Interest (AOI)

Soils

Soil Rating Polygons

- 0 - 25
- 25 - 50
- 50 - 100
- 100 - 150
- 150 - 200
- > 200
- Not rated or not available

Soil Rating Lines


- 0 - 25
- 25 - 50
- 50 - 100
- 100 - 150
- 150 - 200
- > 200
- Not rated or not available

Soil Rating Points

- 0 - 25
- 25 - 50
- 50 - 100
- 100 - 150
- 150 - 200
- > 200

Not rated or not available

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Ulster County, New York

Survey Area Data: Version 21, Sep 10, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 21, 2022—Oct 27, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Depth to Bedrock (Depth to Bedrock)

Map unit symbol	Map unit name	Rating (centimeters)	Acres in AOI	Percent of AOI
At	Atherton silt loam	>200	0.2	0.2%
BgC	Bath gravelly silt loam, 8 to 15 percent slopes	>200	15.0	18.6%
BgD	Bath gravelly silt loam, 15 to 25 percent slopes	>200	13.0	16.1%
BnC	Bath-Nassau complex, 8 to 25 percent slopes	122	6.6	8.3%
BOD	Bath-Nassau-Rock outcrop complex, hilly	122	2.4	3.0%
Cd	Canandaigua silt loam, till substratum	>200	1.3	1.7%
CgA	Castile gravelly silt loam, 0 to 3 percent slopes	>200	0.0	0.0%
MdB	Mardin gravelly silt loam, 3 to 8 percent slopes	>200	9.4	11.7%
MgB	Mardin-Nassau complex, 3 to 8 percent slopes	>200	2.7	3.4%
VoB	Volusia gravelly silt loam, 3 to 8 percent slopes	>200	24.8	30.8%
VoC	Volusia gravelly silt loam, 8 to 15 percent slopes	>200	5.1	6.3%
Totals for Area of Interest			80.4	100.0%

Rating Options—Depth to Bedrock (Depth to Bedrock)

Units of Measure: centimeters

Aggregation Method: Dominant Component

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component

typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Component" returns the attribute value associated with the component with the highest percent composition in the map unit. If more than one component shares the highest percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher attribute value should be returned in the case of a percent composition tie. The result returned by this aggregation method may or may not represent the dominant condition throughout the map unit.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Lower

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Interpret Nulls as Zero: No

This option indicates if a null value for a component should be converted to zero before aggregation occurs. This will be done only if a map unit has at least one component where this value is not null.

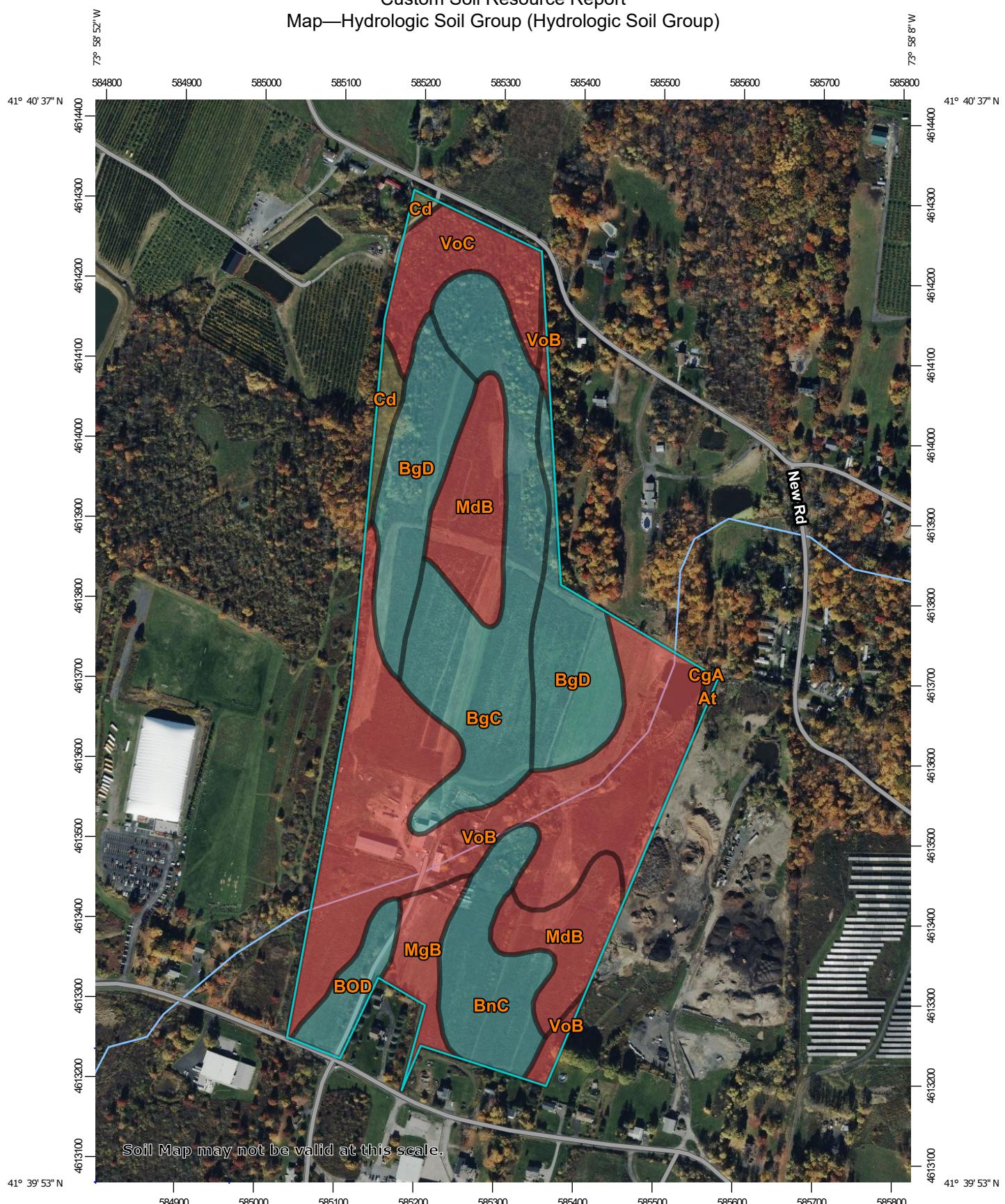
Hydrologic Soil Group (Hydrologic Soil Group)

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Custom Soil Resource Report

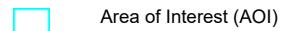
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Custom Soil Resource Report Map—Hydrologic Soil Group (Hydrologic Soil Group)

Soil Map may not be valid at this scale.

Map Scale: 1:6,590 if printed on A portrait (8.5" x 11") sheet.


A horizontal scale bar with a black segment on the left and a white segment on the right. The text 'Meters' is at the right end. Numerical values 0, 50, 100, 200, and 300 are placed below the bar.

0 300 600 1200 1800

edge tic

MAP LEGEND

Area of Interest (AOI)

Soils

Soil Rating Polygons

	A
	A/D
	B
	B/D
	C
	C/D
	D
	Not rated or not available

Soil Rating Lines

	A
	A/D
	B
	B/D
	C
	C/D
	D
	Not rated or not available

Soil Rating Points

	A
	A/D
	B
	B/D


C

C/D

D

Not rated or not available

Water Features

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Ulster County, New York

Survey Area Data: Version 21, Sep 10, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 21, 2022—Oct 27, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group (Hydrologic Soil Group)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
At	Atherton silt loam	B/D	0.2	0.2%
BgC	Bath gravelly silt loam, 8 to 15 percent slopes	C	15.0	18.6%
BgD	Bath gravelly silt loam, 15 to 25 percent slopes	C	13.0	16.1%
BnC	Bath-Nassau complex, 8 to 25 percent slopes	C	6.6	8.3%
BOD	Bath-Nassau-Rock outcrop complex, hilly	C	2.4	3.0%
Cd	Canandaigua silt loam, till substratum	C/D	1.3	1.7%
CgA	Castile gravelly silt loam, 0 to 3 percent slopes	A/D	0.0	0.0%
MdB	Mardin gravelly silt loam, 3 to 8 percent slopes	D	9.4	11.7%
MgB	Mardin-Nassau complex, 3 to 8 percent slopes	D	2.7	3.4%
VoB	Volusia gravelly silt loam, 3 to 8 percent slopes	D	24.8	30.8%
VoC	Volusia gravelly silt loam, 8 to 15 percent slopes	D	5.1	6.3%
Totals for Area of Interest			80.4	100.0%

Rating Options—Hydrologic Soil Group (Hydrologic Soil Group)*Aggregation Method: Dominant Condition*

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. <http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084>

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf