
SOIL & MATERIALS MANAGEMENT PLAN

**MARLBOROUGH RESORT
626 LATTINTOWN ROAD
TOWN OF MARLBOROUGH
ULSTER COUNTY, NEW YORK 12542
TAX IDs #102.4-3-8.320, 102.4-2-12, 102.4-2-13, & 102.4-2-29**

PREPARED FOR:

Passero Associates
19 Front Street
Newburgh, New York 12550

PREPARED BY:

PVE Engineering
48 Springside Avenue
Poughkeepsie, New York 12603
Phone: 845-454-2544 – Fax: 845-454-2655

August 2024
PVE File #20230293

TABLE OF CONTENTS

1.0 INTRODUCTION.....	1
1.1 Project Background.....	1
1.2 Previous Investigations Summary and Findings.....	1
2.0 PLAN APPLICABILITY AND SUMMARY	3
3.0 SCOPE OF WORK.....	4
3.1 Delineation Soil Borings.....	4
3.2 Soil Containing Orchard Contaminants	5
3.3 Non-Impacted Native Fill and Imported Fill	6
4.0 DATA DOCUMENTATION	11

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Selected Site Features
Figure 3	Previous Sampling Locations Exceeding SCOs
Figure 4	Proposed Redevelopment and Grading Plan

LIST OF APPENDICES

Appendix A	Health and Safety Plan
Appendix B	Community Air Monitoring Plan
Appendix C	Limited Surface Soil Evaluation, PVE LLC, July 7, 2023

1.0 INTRODUCTION

Partridge Venture Engineering, PC, dba PVE Engineering (“PVE”), prepared this Soil & Materials Management Plan (“SMMP” or “the Plan”) for the property located at 626 Lattintown Road, Town of Marlborough, Ulster County, New York (“the Site”), which is intended to be redeveloped as the “Marlborough Resort.” This Plan shall guide the on-site beneficial reuse of former orchard soils for slope/grade adjustment purposes during redevelopment, in accordance with the exemption described in 6NYCRR Part 360.12(c)(1)(iv). The objective of this Plan is to ensure that orchard-impacted soils are managed in accordance with criteria set forth in 6NYCRR Part 360.

Imported material or locally sourced (on-Site) fill intended for use as cover shall meet the definition of Fill Type 1 or Fill Type 2 as defined in section 360.13(f). The use of Fill Type 1 and/or 2 in conjunction with proposed hardscapes will effectively eliminate the potential for future human exposure.

1.1 Project Background

The Site is located on the east side of Lattintown Road in Marlborough, New York, and is approximately 152.55-acres in area (See Figure 1 & 2). Known previous environmental investigations conducted at the Site include:

- Limited Surface Soil Evaluation, *PVE LLC, July 7, 2023*

The analytical findings from this previous soil investigation are summarized below. For additional information about this previous environmental investigation, please refer to Appendix C of this report.

1.2 Previous Investigations Summary and Findings

A total of twelve (12) soil borings have been completed and sampled on the Site. The forty-eight (48) soil samples collected from these borings. Of the forty-eight (48) soil samples, only thirty (30) were analyzed for some or all of the following:

- Part 375 List Pesticides via United States Environmental Protection Agency (USEPA) Method 8081;
- Part 375 List Herbicides via USEPA Method 8151;
- Mercury via USEPA Method 7471; &
- Arsenic & Lead via USEPA Method 6010.

Soil sample results are summarized below and compared to Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Restricted Residential Soil Cleanup Objectives (RRSCOs) per 6 NYCRR Part 375.

Soil Results:

Analyte	Sample ID	SB-1 0-1'	SB-1 1-2'	SB-1 2-3'	SB-2 0-1'	SB-2 1-2'
	UUSCO	RRSCO				
METALS mg/kg						
Arsenic	13	16	26.3	16.2	14.3	31.2
Lead	63	400	NE	NE	NE	78.4
Mercury	0.18	0.81	NE	NE	NE	0.314

Analyte	Sample ID	SB-1 0-1'	SB-1 1-2'	SB-1 2-3'	SB-2 0-1'	SB-2 1-2'
	UUSCO	RRSCO				
PESTICIDES ug/kg						
4,4'-DDD	3.3	2600	NE	NE	NS	NE
4,4'-DDE	3.3	1800	12.4	NE	NS	69.8
4,4'-DDT	3.3	1700	NE	NE	NS	12.1
Dieldrin	5	39	NE	NE	NS	NE

Analyte	Sample ID	SB-3 0-1'	SB-3 1-2'	SB-3 2-3'	SB-4 0-1'	SB-4 1-2'
	UUSCO	RRSCO				
METALS mg/kg						
Arsenic	13	16	26	17.3	15.2	21.5
Lead	63	400	67.9	NE	NS	NE
Mercury	0.18	0.81	NE	NE	NS	NE
PESTICIDES ug/kg						
4,4'-DDD	3.3	2600	NE	NE	NS	NE
4,4'-DDE	3.3	1800	66	12	NS	NE
4,4'-DDT	3.3	1700	9.52	NE	NS	NE
Dieldrin	5	39	NE	NE	NS	NE

Analyte	Sample ID	SB-4 2-3'	SB-5 0-1'	SB-5 1-2'	SB-5 2-3'	SB-6 0-1'
	UUSCO	RRSCO				
METALS mg/kg						
Arsenic	13	16	20.6	15.3	17.5	14.6
Lead	63	400	NE	NE	NE	NS
Mercury	0.18	0.81	NE	NE	NE	NS
PESTICIDES ug/kg						
4,4'-DDD	3.3	2600	NS	NE	NE	NS
4,4'-DDE	3.3	1800	NS	7.67	NE	NS
4,4'-DDT	3.3	1700	NS	NE	NE	NS
Dieldrin	5	39	NS	NE	NE	NS

Analyte	Sample ID	SB-6 1-2'	SB-7 0-1'	SB-7 1-2'	SB-7 2-3'	SB-8 0-1'
	UUSCO	RRSCO				
METALS mg/kg						
Arsenic	13	16	14.3	117	21.9	NE
Lead	63	400	NE	358	NE	NS
Mercury	0.18	0.81	NE	NE	NE	NE
PESTICIDES ug/kg						
4,4'-DDD	3.3	2600	NE	12.8	NE	NS
4,4'-DDE	3.3	1800	NE	96	27.8	NS
4,4'-DDT	3.3	1700	NE	79.2	4.56	NS
Dieldrin	5	39	NE	33.2	NE	NS
						60.4

Analyte	UUSCO	Sample ID	SB-8	SB-9	SB-9	SB-10	SB-10
		RRSCO	1-2'	0-1'	1-2'	0-1'	1-2'
METALS mg/kg							
Arsenic	13	16	14.2	13.1	NE	21.2	13.9
Lead	63	400	NE	NE	NE	NE	NE
Mercury	0.18	0.81	NE	NE	NE	NE	NE
PESTICIDES ug/kg							
4,4'-DDD	3.3	2600	NE	NE	NE	NE	NE
4,4'-DDE	3.3	1800	NE	13.1	NE	17.9	7.11
4,4'-DDT	3.3	1700	NE	NE	15.1	7.74	NE
Dieldrin	5	39	5.09	NE	NE	19	5.49

Analyte	UUSCO	Sample ID	SB-11	SB-11	SB-11	SB-12	SB-12
		RRSCO	0-1'	1-2'	2-3'	0-1'	1-2'
METALS mg/kg							
Arsenic	13	16	36.6	17.7	15.7	20.9	13.6
Lead	63	400	82.6	NE	NS	NE	NE
Mercury	0.18	0.81	NE	NE	NS	NE	NE
PESTICIDES ug/kg							
4,4'-DDD	3.3	2600	NE	NE	NS	3.6	NE
4,4'-DDE	3.3	1800	12.6	3.59	NS	74	7.09
4,4'-DDT	3.3	1700	NE	NE	NS	12.8	NE
Dieldrin	5	39	NE	NE	NS	NE	NE

NE = No Exceedance

NS = Not Sampled

As summarized above, contaminants of concern on this Site consist of pesticides and metals, which are residues of pesticides applied to former orchard trees. However, only arsenic exceeds the Site's intended use.

2.0 PLAN APPLICABILITY AND SUMMARY

All work will be completed following industry standards and in accordance with applicable DEC guidance documents, rules, and regulations. PVE personnel will be responsible for reviewing the contents of this SMMP with on-site personnel and/or subcontractors to ensure the Plan is implemented properly. When PVE personnel are not on-site the personnel involved in redevelopment of the property have the responsibility of following the procedures outlined herein. In general, this SMMP outlines the handling and/or disposal of materials generated in the following categories:

1. **Delineation Soil Borings** – Supplemental soil sampling may further refine the areas requiring special handling/capping, additional details are provided in Section 3.1, below.
2. **Soil Containing Orchard Contaminants (Arsenic)** – Excavation activities are proposed in areas of soil known to contain pesticides and metals at concentrations exceeding

UUSCOs and/or RRSCOs as defined in 6 NYCRR 375-6.8(b). Soils in these areas will be handled and reused in accordance with this SMMP. Additional details are provided in Section 3.2, below.

3. ***Non-Impacted Native Fill and Imported Fill*** – Soil disturbance during site redevelopment will include regrading, slope adjustment, and installation of utilities and foundations. Soil will be visually inspected by the site contractor during all excavation activities. Any fill material used as backfill for the excavation from which the fill material was taken, or as on-site fill in areas of similar physical characteristics, is exempt from regulation in accordance with 6 NYCRR 360.12(c)(1)(iv). Any fill observed to exhibit historical or visual evidence of contamination (including odors) will be placed under a minimum of 12 inches of Fill Type 1 or 2. Additional details are provided in Section 3.3, below.

Excess fill to be disposed of off-site disposal, if any, will undergo proper characterization and will be subject to approval by the disposal facility

3.0 SCOPE OF WORK

3.1 Delineation Soil Borings

While not required, PVE advises the installation and sampling of supplemental soil borings throughout the Site to further delineate the vertical and horizontal distribution of contaminants which will better define the portions of the site requiring special handling in accordance with Section 3.2 below. Soil borings may be installed using a track-mounted Geoprobe™ unit equipped with 4-foot long, 2 ¼-inch diameter core barrels (macro-cores) fitted with PVC liners or hand tools to a maximum depth of 4 feet bgs, or similar method. One (1) soil sample will be collected from each foot of the soil boring for a total of four (4) soil samples per soil boring location. Drilling equipment will be properly decontaminated prior to collection of each soil sample. Soil samples will be containerized in laboratory provided glassware and submitted to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory for analysis of the known contaminant of concern:

- Arsenic via UESPA Method 6010.

The surficial soil sample (0-1 foot) will be analyzed for arsenic. Soil samples from 1-2 feet, 2-3 feet and 3-4 feet bgs will be placed on hold at the laboratory pending analytical results for the surficial interval (i.e. if shallower samples exceed applicable SCOs, deeper intervals shall be analyzed).

Soil borings will be backfilled with native soil cuttings and clean sand, as necessary, back to ground surface.

PVE will prepare a summary report detailing the findings of this investigation, including a figure depicting the location and depth of samples exceeding RSCOs and Protection of Groundwater SCOs (PGWSCOs) as defined in 6 NYCRR Part 375. Samples will be characterized in accordance with the fill types described in Section 3.3.

3.2 Soil Containing Orchard Contaminants

The following steps will be taken to ensure proper handling, stockpiling, and on-site reuse and/or off-site disposal of soil known or suspected to contain orchard-related residues during site redevelopment.

- General fugitive dust control measures (watering work areas, reduced traffic speeds, etc.) will be performed when dust is observed during construction activities. The Community Air Monitoring Plan (CAMP) presented in Appendix B, consisting of upwind and downwind monitoring for particulate matter, will be implemented daily for 1-2 weeks during active earthwork to determine if continued air monitoring is warranted. Previously unidentified conditions encountered during excavation activities may necessitate additional CAMP tasks or resuming CAMP if monitoring had been suspended. A reduced monitoring frequency may be proposed should the preceding weeks of CAMP implementation data warrant it.
- See Figure 3 for locations of soils containing orchard related contaminants.
 - **All on-site orchard contaminated soils excavated during site development may be used to backfill the same excavation or as grade adjustment in areas of similar physical characteristics on the site of generation in accordance with 6 NYCRR 360.12(c)(1)(iv).**
 - Because these soils are known to exhibit historical evidence of contamination, they shall be covered with pavement, foundations, or with a minimum of 12-inches of soil or fill that meets the criteria of Fill Type 1 or Fill Type 2 in Section 3.3, below.
 - Soils meeting the definition of Fill Type 2 (delineated during Section 3.1 borings) may be sourced from within the parcel and beneficially reused at the surface and as part of the 12-inch soil/fill cover described above.
 - These fill types will be segregated and stockpiled separately. Stockpiled orchard contaminated soils not meeting Fill Type 1 or 2 shall be covered with poly sheeting at the end of each workday.
 - If fill material is proposed to be exported off-Site, the soils shall be sampled at the frequency and analyses prescribed by the receiving party(ies) and/or disposal facility(ies).
- It is anticipated that soil disturbance work will be performed by personnel in Level D personal protective equipment (PPE). Should health and safety monitoring during field activities warrant an upgrade to Level C protection, work will temporarily stop, and Level C PPE will be donned. The work area/breathing zone air monitoring program will be implemented by employing direct-reading survey instruments to identify the appropriate level of PPE needed based on total organic vapor and particulate concentrations. See the Site-specific HASP in Appendix A for additional information.
- Any visibly contaminated soil, including soil which exhibits elevated photo-ionization detector (PID) readings or visual/olfactory staining, that cannot be reused and capped on-site shall be stockpiled on, and covered with, 6-mil poly sheeting. Stockpiles will be placed outside wetland and pond flood areas to avoid contamination of stagnant water.

Any gross petroleum contaminated soil will result in notification of the NYSDEC Spill Hotline.

- Stockpiles of visibly contaminated soils requiring off-site disposal shall be characterized according to the requirements of the selected disposal facility (sample frequency and required analyses will be facility-specific). Material that has been approved for disposal shall be loaded into properly permitted trucks and delivered to the selected facility. Manifests or bills of lading shall be signed by the generator and forwarded.
- Imported fill and/or stockpiles of visibly contaminated soil proposed for reuse on-site that cannot be capped beneath clean fill or other site improvements *or* proposed for re-use on another site (by the owner or site contractor) shall be sampled in accordance with the frequency described in the Table 1: Minimum Analysis Frequency for Fill, below.

3.3 Non-Impacted Native Fill and Imported Fill

Excavated material that is not otherwise excluded or exempt from analysis (designated for reuse beneath 12-inches of Fill Type 1 or 2 and/or hardscapes) must be sampled and analyzed in accordance with 360.13 if:

1. The excavated material originates from a location within the City of New York unless the quantity of excavated material does not exceed 10 cubic yards from one site and the 10 cubic yards or less of material does not exhibit historical evidence of contamination based on site use, reported spill events, or visual and other indicators (odors, etc.) of chemical or physical contamination; or
2. The excavated material originates from a location outside the City of New York and either one of the following occur:
 - (i) there is historical evidence of contamination based on site use, reported spill events, or visual and other indicators (odors, etc.) of chemical or physical contamination discovered prior to excavation; or
 - (ii) visual indication of chemical or physical contamination is discovered during excavation. (e) Sampling and analysis requirements for excavated material as (1) Sample method and frequency. Samples must be representative of the fill. The sampling program must be designed and implemented by or under the direction of a qualified environmental professional (QEP), using Table 1 below as a minimum sampling frequency. Written documentation of the sampling program with certification from the QEP that samples were representative of the fill must be retained for three years after the sampling occurs and must be provided to the department upon request.

Table 1: Minimum Analysis Frequency for Fill

Fill Material Quantity (cubic yards)	Minimum Number of Analyses for Volatile Organic Compounds	Minimum Number of Analyses for all Other Parameters
0-300	2	1
301-1,000	4	2
1,001-10,000	6	3

10,001+	Two for every additional 10,000 cubic yards or fraction thereof	One per every additional 10,000 cubic yards or fraction thereof
---------	---	---

- Imported fill material must be analyzed for:
 - the Metals, PCBs/Pesticides, and Semi-volatile organic compounds listed in section listed in 6 NYCRR Part 375-6.8(b);
 - VOCs listed in 6 NYCRR Part 375-6.8(b), if their presence is detected by photoionization detector (PID) readings or other field instrument readings; &
 - Asbestos, if suspect asbestos-containing material (AMC) is observed as determined by the New York State Department of Labor (NYSDOL) or a New NYSDOL certified inspector. If sampling is required, at least two (2) samples must be collected from each suspect asbestos containing excavated material to be used.
- Fill material generated on site may be beneficially reused on-site, or on another site, in accordance with the table below (Part 360.13 – Table 2).

<i>Fill Type</i>	<i>Fill End Use</i>	<i>Physical Criteria</i>	<i>Maximum Concentration Levels</i>
Fill Type 1 (F1)	Any end use.	Only soil, sand, gravel or rock which is generated outside of New York City with no evidence of historical contamination based on site use, reported spill events, or visual other indications (odors, etc.); no non-soil constituents. Must not produce objectionable petroleum or other odors	No testing required.
Fill Type 2 (F2)	Any setting where the fill meets the engineering criteria for use, except: agricultural land use for raising livestock or producing animal products for human consumption. Fill Type 2 may also be used in the same manner as Fill Type	Only soil, sand, gravel, or rock; no non-soil constituents. Must not produce objectionable petroleum or other odors.	Lower level between Protection of Public Health-Residential Land Use and Protection of Groundwater Soil Cleanup Objectives in Section 375-6.8(b) of this Title.

	3, Fill Type 4, and Fill Type 5.		
Fill Type 3 (F3)	<p>Any setting where the fill meets the engineering criteria, for use, except: 1. Undeveloped land; and 2. Agricultural crop on land used for raising livestock or producing animal products for human consumption.</p> <p>If use on residential property, material must be under impermeable surface or under a minimum three inches of Fill Type 1, Fill Type 2, or commercial soil.</p> <p>Fill Type 3 may also be used in the same manner as Fill Type 4 and Fill Type 5.</p>	<p>Only soil, sand, gravel, and de minimis amounts of brick, concrete, or asphalt; no other non-soil constituents. Must not produce objectionable petroleum or other odors.</p>	<p>Lower level between Protection of Public Health-Residential Land Use and Protection of Groundwater Soil Cleanup Objectives in Section 375-6.8(b) of this Title.</p>
Fill Type 4 (F4)	<p>Engineered use for embankments or subgrade: A) transportation corridors, or B) on sites where in-situ materials contain higher levels of contaminants than Fill Type 4 or Fill Type 5 criteria.</p> <p>Must be placed above the seasonal highwater table.</p> <p>May also be used in the same manner as Fill Type 5, except in</p>	<p>No volume limit for granular, compactible, non-soil constituents.</p>	<p>Same level as Fill Type 2, except that polycyclic aromatic hydrocarbons must not exceed 3 mg/kg (dry weight) total benzo(a)pyrene (BAP) equivalent.</p> <p>No greater than one percent by weight for any single suspect ACM.</p> <p>In Nassau or Suffolk County, Individual polycyclic aromatic hydrocarbons must not exceed Protection of Groundwater Soil Cleanup Objectives in the</p>

	locations where using Fill Type 5 is prohibited in accordance with paragraph 360.13(g)(2).		table in Section 375-6.8(b) of this Title. (BAP equivalent does not apply.)
Fill Type 5 (F5)	Engineering use under foundations and pavements above the seasonal highwater table.	No volume limit for granular, compactable non-soil constituents.	Same levels as Fill Type 2, except metals must not exceed Protection of Public Health-Commercial Soil Cleanup Objectives in the table in Section 375-6.8(b) of this Title; and BAP equivalent must not exceed 3 mg/kg (dry weight). No greater than one percent by weight for any single suspect asbestos-containing material.

- No notification process is required for reuse of Fill Types 1-3. Fill Types 4 and 5, generated outside of New York City requires notification to NYSDEC at least 5-days before delivery (or use) of greater than 10 cubic yards of material. Notification must be made on forms or in a manner acceptable to NYSDEC and must include any analytical data required. NYSDEC reserves the right to inspect any site receiving fill material.
- Use of Fill Type 4 or Fill Type 5 can only occur at a project that is authorized by an approved local building permit or other municipal authorization, if required. The material must be used within 30 days of arriving at the project site.
- Any of the entities involved in the sampling and analysis of material subject to this Soil & Materials Management Plan (and in accordance with 6NYCRR Part 360), including generators, processors, and receivers of fill material, must retain records of fill material quantities, with analytical data, for a minimum of three years after the fill material is removed or received, as applicable. These records must be made available to the department upon request. These records shall also be forwarded to PVE.
- A person must not receive payment or other form of consideration for allowing beneficial use of Fill Type 3, Fill Type 4 or Fill Type 5 on land under that person's control. Fill Type 4 or Fill Type 5 on land under that person's control can be reused on the same site.

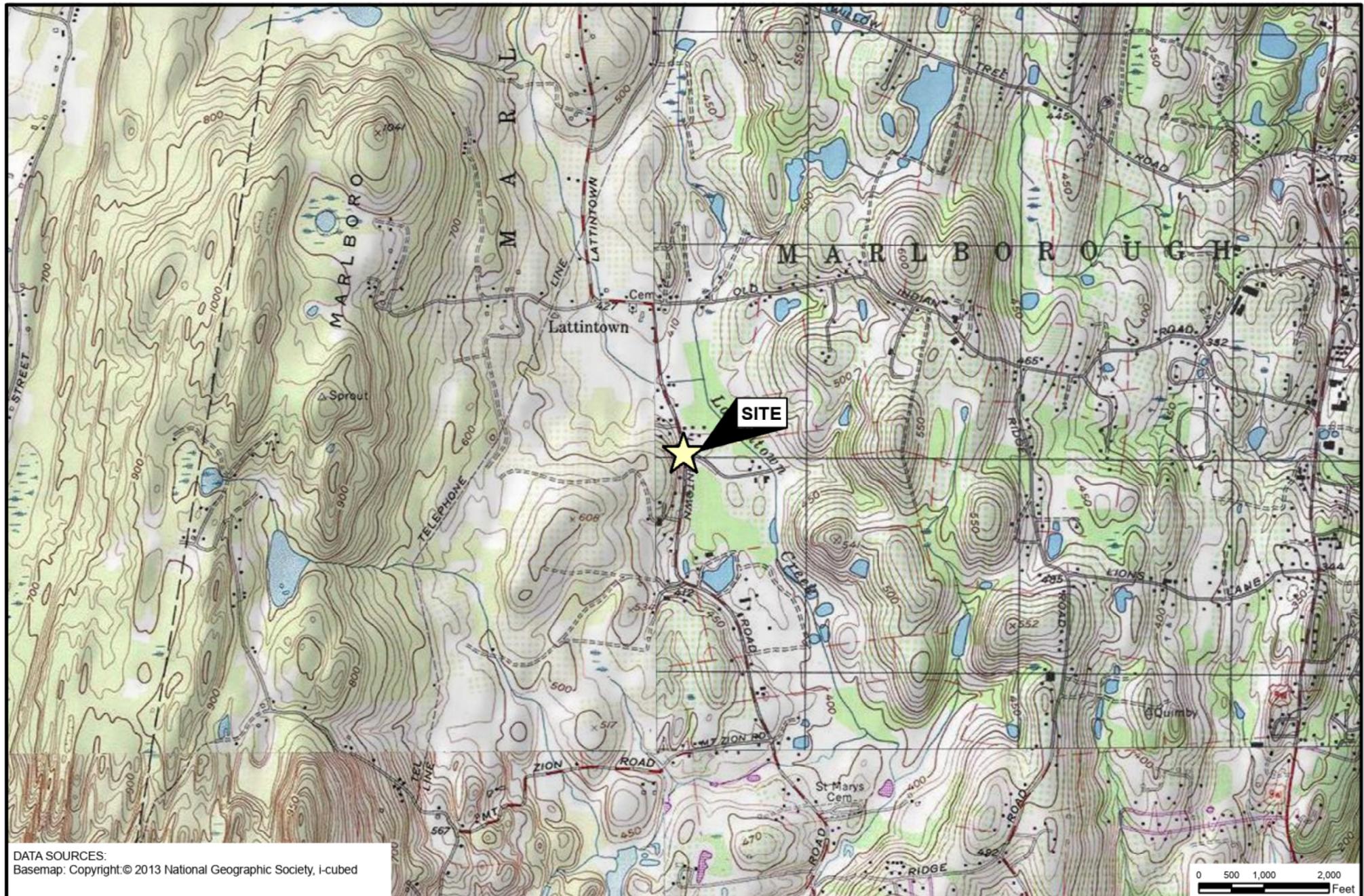
3.4 Dust Control

Dust Control

As described in Section 3.2, general fugitive dust control measures (watering work areas, reduced traffic speeds, etc.) will be performed when dust is observed during construction activities. The Community Air Monitoring Plan (CAMP) presented in Appendix B, consisting of upwind and downwind monitoring for particulate matter, will be implemented daily for 1-2 weeks during active earthwork to determine if continued air monitoring is warranted. Previously unidentified conditions encountered during excavation activities may necessitate additional CAMP tasks or resuming CAMP if monitoring had been suspended. A reduced monitoring frequency may be proposed should the preceding weeks of CAMP implementation data warrant it.

Dust management during invasive on-Site work will include, at a minimum:

- Use of a dedicated water spray methodology for roads, excavation areas and stockpiles.
- Use of properly anchored tarps to cover stockpiles.
- Exercise extra care during dry and high-wind periods.
- Use of gravel or recycled concrete aggregate on egress and other roadways to provide a clean and dust-free road surface.


This dust control plan is capable of controlling emissions of dust. If nuisance dust emissions are identified, work will be halted and the source of dusts will be identified and corrected. Work will not resume until all nuisance dust emissions have been abated.

4.0 DATA DOCUMENTATION

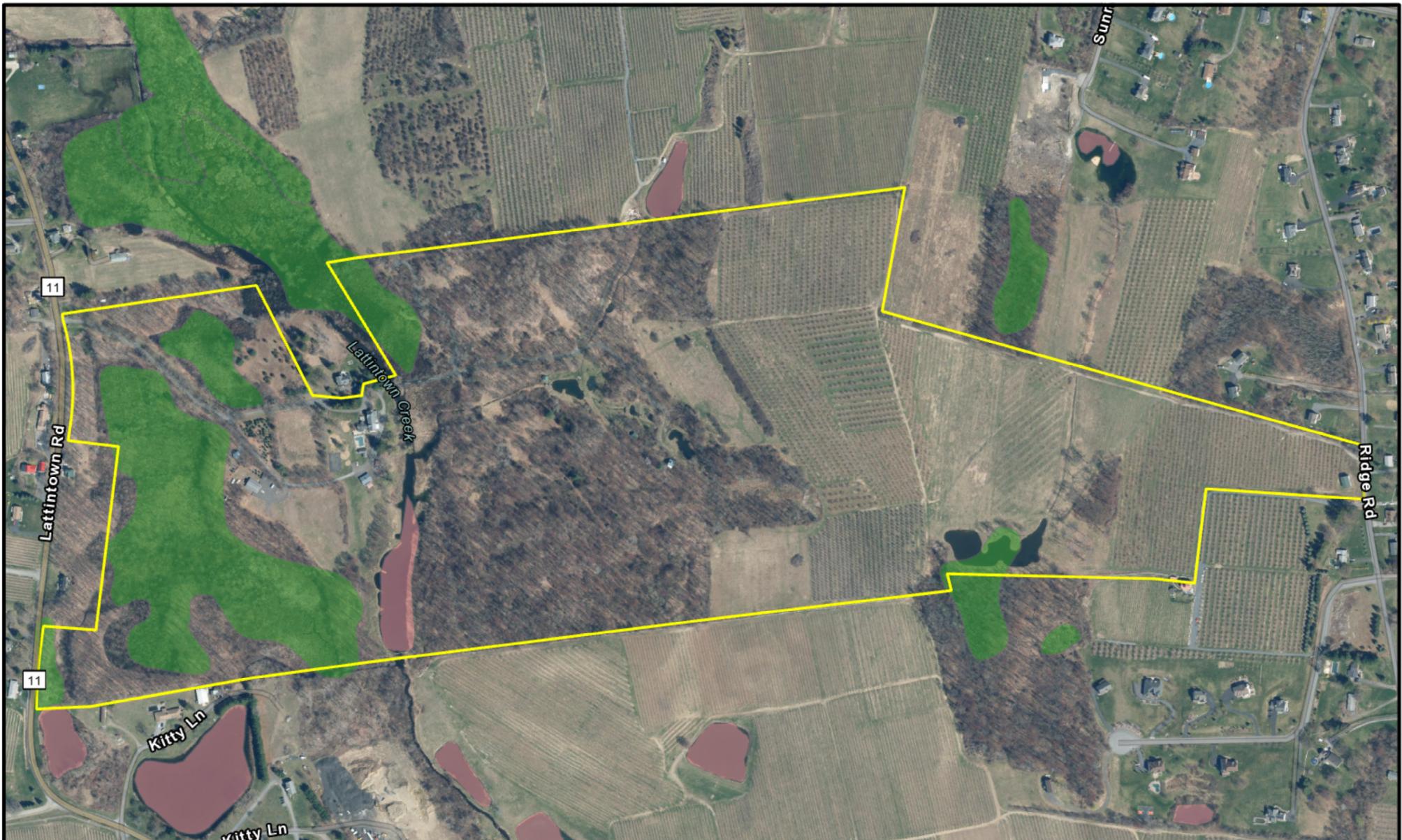
Comprehensive field notes will be maintained during field work in which PVE is on-site implementing CAMP or documenting progress. In addition, daily photographs that summarize fieldwork will be taken and will become part of the project file. A photographic log will be created.

FIGURES

PVE
48 Springside Avenue
Poughkeepsie, NY 12603
Office: 845.454.2544
Fax: 845.454.2655

SITE LOCATION MAP
626 LATTINTOWN ROAD, TOWN OF MARLBORO
ULSTER COUNTY, NEW YORK

PROJECT NO.
20230293


FIGURE 1

DATE: 07/07/2023

SCALE: AS INDICATED

PROJECTION: STATE PLANE NAD83 NY EAST

ALL LOCATIONS APPROXIMATE

DATA SOURCES:

Tax Parcel Outline: Ulster County, GIS, 09/2022

Wetland Data: National Wetlands Inventory, 09/21/2009

Basemap: Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, New York State, Maxar, Copyright © 2013 National Geographic Society, i-cubed

0 140 280 550
Feet

48 Springside Avenue
Poughkeepsie, NY 12603
Office: 845.454.2544
Fax: 845.454.2655

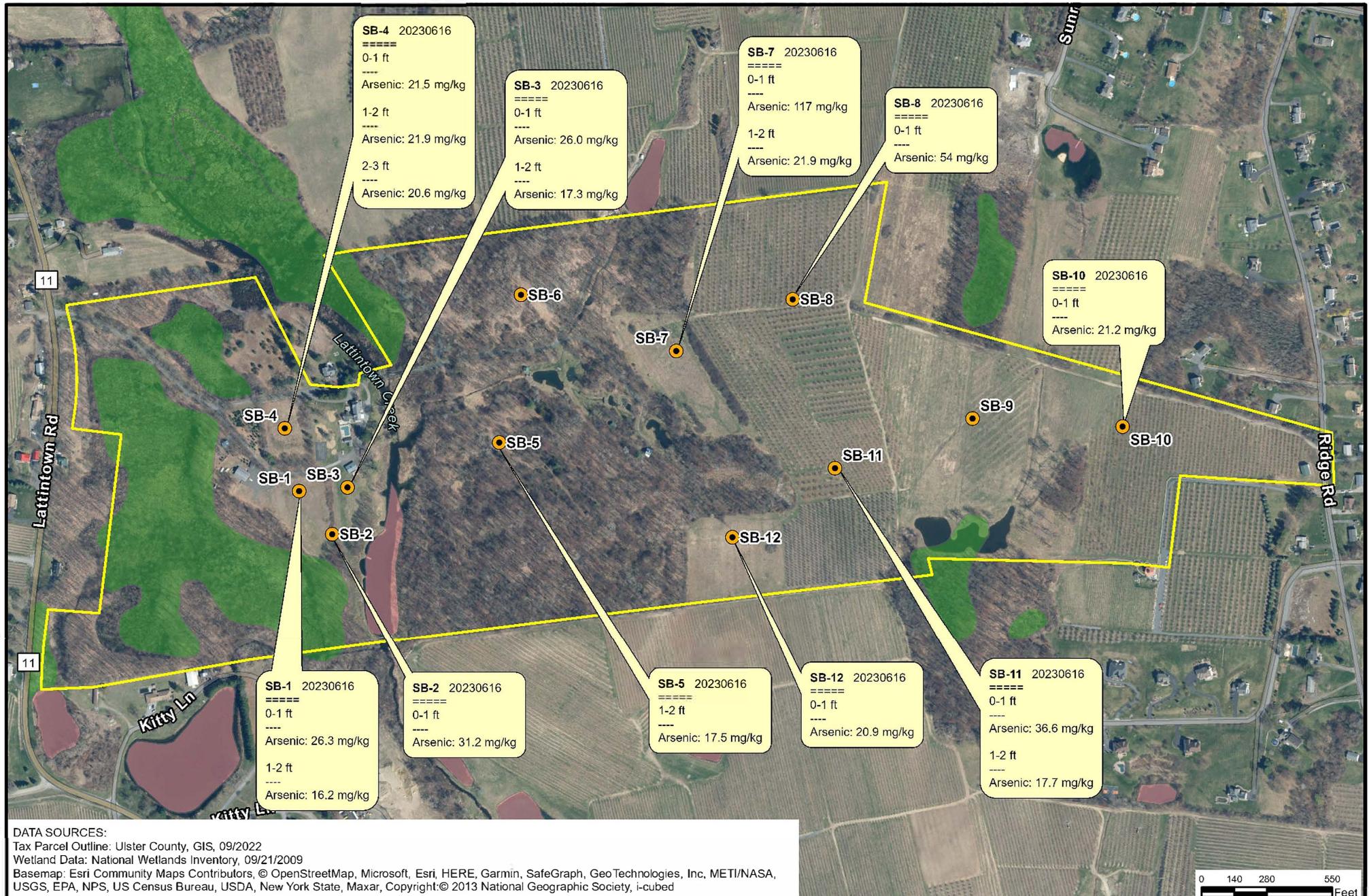
SELECTED SITE FEATURES

626 LATTINTOWN ROAD, TOWN OF MARLBORO
ULSTER COUNTY, NEW YORK

LEGEND

- SUBJECT PROPERTY AREA
- FRESHWATER FORESTED/ SHRUB WETLAND
- FRESHWATER POND

PROJECT NO.
20230293


FIGURE 2

DATE: 06/13/2023

SCALE: AS INDICATED

PROJECTION: STATE PLANE NAD83 NY EAST

ALL LOCATIONS APPROXIMATE

PVE
 48 Springside Avenue
 Poughkeepsie, NY 12603
 Office: 845.454.2544
 Fax: 845.454.2655

SAMPLE LOCATIONS EXCEEDING RRSCOs IN SOIL
 626 LATTINTOWN ROAD, TOWN OF MARLBORO
 ULMSTER COUNTY, NEW YORK

LEGEND

- SOIL BORING
- SUBJECT PROPERTY AREA
- FRESHWATER FORESTED/ SHRUB WETLAND
- FRESHWATER POND

PROJECT NO.
 20230293

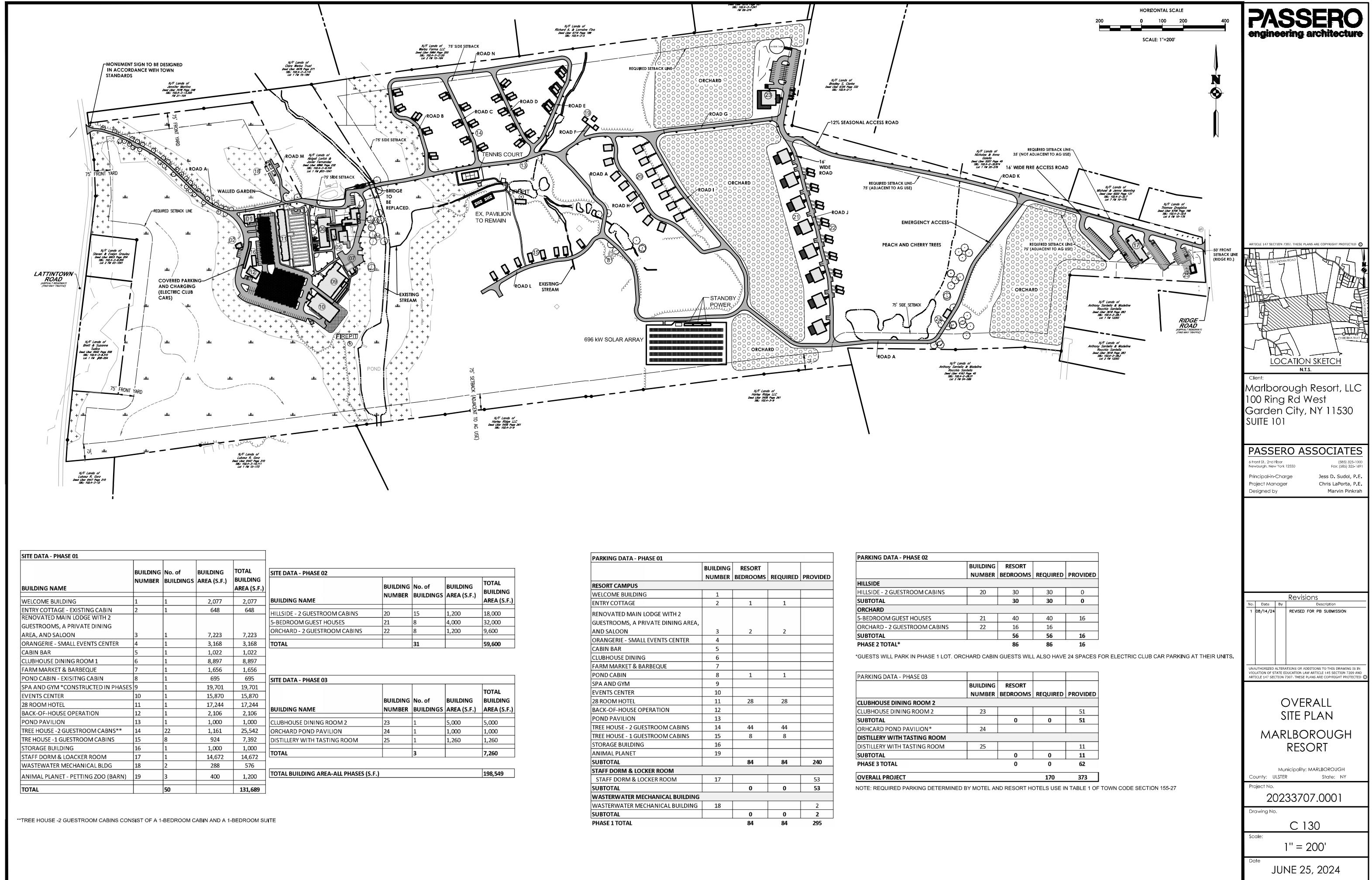


FIGURE 3

DATE:	06/27/2023
SCALE:	AS INDICATED
PROJECTION:	STATE PLANE NAD83 NY EAST
ALL LOCATIONS APPROXIMATE	

FIGURE 4

APPENDIX A

HASP

SITE REDEVELOPMENT HEALTH AND SAFETY PLAN

**626 LATTINTOWN ROAD
TOWN OF MARLBOROUGH
ULSTER COUNTY, NEW YORK**

TAX IDS #102.4-3-8.320, 102.4-2-12, 102.4-2-13, & 102.4-2-29

PREPARED FOR:

Marlborough Resort
Lattintown Road
Marlborough, New York 12542

PREPARED BY:

48 Springside Avenue
Poughkeepsie, New York 12603
Phone: 845-454-2544 • Fax: 845-454-2655

August 2024
PVE File #20230293

MUSTER LOCATION:

Intersection of Lattintown Road and Old Ford Road,
Marlborough, New York
41.638330, -73.998543

EMERGENCY REFERENCES:

Ambulance: Notify 911

Emergency Room: Notify 911

Fire: Notify 911

Client Representative: Conor Tarbell
(845) 454-2544

Police: Notify 911

Hospital: **Nuvance Health Vassar Brothers Medical Center**
45 Reade Place
Poughkeepsie, New York 12601
(845) 454-8500

Table of Contents

1.0	INTRODUCTION.....	2
1.1	HASP Applicability.....	2
1.2	Organization/Responsibilities.....	2
1.2.1	Project Manager.....	3
1.2.2	Health and Safety Manager	3
1.2.3	Site Safety Officer	3
1.2.4	Field Personnel and Covered Subcontractor Personnel.....	4
1.2.5	Contractors.....	4
1.3	Modification of this HASP	5
2.0	SITE DESCRIPTION AND HISTORY.....	6
3.0	SITE REDEVELOPMENT.....	6
4.0	HEALTH AND SAFETY	8
5.0	CHEMICAL HAZARD ASSESSMENT AND CONTROLS	9
5.1	Chemical Hazards.....	9
5.1.1	Chemical Hazards of Metals of Concern.....	9
5.2	Chemical Exposure and Control.....	10
5.2.1	Activities with Chemical Exposure Potential	10
5.2.2	Potential Chemical Exposures and Exposure Action Levels.....	10
5.2.3	Exposure Control	11
6.0	PHYSICAL HAZARDS AND CONTROLS	12
6.1	Utility Hazards	12
6.1.1	Underground Utilities	12
6.1.2	Overhead Utilities.....	12
6.2	Traffic Concerns.....	12
6.3	Excavation Hazards.....	13
6.4	Noise Exposure.....	13
6.5	Back Safety.....	13
6.6	Electrical Safety	14
6.7	Thermal Stress.....	14
6.7.1	Heat Stress	14
6.7.2	Cold Stress.....	16
7.0	AIR MONITORING.....	18
7.1	Monitoring Parameters and Action Levels.....	18
7.2	Direct Reading Instruments.....	19
7.3	Personal Air Sampling.....	19
7.4	Recordkeeping.....	19
8.0	PERSONAL PROTECTIVE EQUIPMENT.....	20
8.1	Chemical Protective Clothing	20
8.2	Respiratory Protection	21
9.0	SITE CONTROL	22
9.1	Work Zones	22
9.1.1	Exclusion Zone	22
9.1.2	Contamination Reduction Zone	22
9.1.3	Support Zone	22
9.2	Safety Practices	23
10.0	DECONTAMINATION	24
10.1	Personal Decontamination.....	24
10.2	Equipment Decontamination.....	24

11.0	MEDICAL MONITORING AND TRAINING REQUIREMENTS.....	25
11.1	Medical Monitoring.....	25
11.2	Health and Safety Training.....	25
11.3	Pre-Entry Briefing	25
12.0	EMERGENCY RESPONSE.....	26
12.1	Employee Training	26
12.2	Alarm Systems/Emergency Signals	26
12.3	Escape Routes and Procedures	27
12.4	Rescue and Medical Duty Assignments	27
12.5	Designation of Responsible Parties	27
12.6	Employee Accounting Method.....	27
12.7	Accident Reporting and Investigation	27
EMERGENCY CONTACTS.....		29

ATTACHMENTS

Attachment A	HASP Receipt and Acceptance Form
Attachment B	HASP Pre-Entry Briefing Attendance Form
Attachment C	Supervisor's Accident Investigation Report Form
Attachment D	Chemical Hazard and SDS Sheets (Upon Request)
Attachment E	Summary of Lead in Construction Standard (29 CFR 1926.62)

FIGURES

Figure 1	Site Location Map
Figure 2	Selected Site Features
Figure 3	Route to Nearest Hospital

1.0 INTRODUCTION

1.1 HASP Applicability

This site-specific Health and Safety Plan (HASP) has been developed by Partridge Venture Engineering, PC doing business as PVE Engineering (“PVE”) and establishes the health and safety procedures to minimize potential risks to personnel involved with the site redevelopment activities at 626 Lattintown Road, Town of Marlborough, Ulster County, New York. This HASP applies to all personnel potentially exposed to safety and/or health hazards related to the activities described in Section 3.0 of this document.

THIS HASP APPLIES TO PVE PERSONNEL THIS HASP CAN BE UTILITZED BY OTHER ENTITIES FOR THIS PROJECT, AT THEIR SOLE RISK, WHICH IS ACKNOWLEDGED ON THE HASP RECEIPT AND ACCEPTANCE FORM (ATTACHMENT A).

PVE IS NOT RESPONSIBLE FOR PROVIDING PERSONAL PROTECTIVE EQUIPMENT, FIT-TESTING OF RESPIRATORS, AND/OR MEDICAL MONITORING OUTLINED IN THIS DOCUMENT, WHETHER RETAINED BY PVE or NOT. IT IS THE SOLE RESPONSIBILITY OF ALL CONTRACTORS TO IMPLEMENT THEIR HEALTH AND SAFETY PROCEDURES IN ACCORDANCE WITH ALL REQUIREMENTS OUTINED HEREIN.

This HASP has been prepared to comply with the applicable requirements of the Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120). Activities covered by this HASP must be conducted in complete compliance with this HASP and with all applicable Federal, State, and local health and safety regulations. Personnel covered by this HASP who cannot or will not comply will be excluded from site activities.

This HASP will be distributed to each person involved with investigative activities at the site. Each person must sign a copy of the attached HASP Receipt and Acceptance Form (see Attachment A).

1.2 Organization/Responsibilities

The implementation of health and safety measures at this project location will be the shared responsibility of the Project Manager (PM), the Health and Safety Manager (HSM), the Project Site Safety Officer (SSO) and all other personnel who conduct activities at the site.

- Project Manager: Conor Tarbell
- Health and Safety Manager: Anthony Spadavecchia
- Project Site Safety Officer: Tabatha Clevenger

1.2.1 Project Manager

The PM has the primary responsibility for ensuring overall health and safety for this project. As such, the PM is responsible for ensuring that the requirements of this HASP are implemented. Some of the PM's specific responsibilities include:

- Ensuring that all personnel to whom this HASP applies have received a copy of it;
- Providing the SSO with updated information regarding environmental conditions at the site and the scope of site work;
- Providing adequate authority and resources to the on-site SSO to allow for the successful implementation of all necessary safety procedures;
- Supporting the decisions made by the SSO;
- Maintaining regular communications with the SSO; and
- Coordinating the activities of all subcontractors and ensuring that they are aware of the pertinent health and safety requirements for this project.

1.2.2 Health and Safety Manager

The Health and Safety Manager (HSM) is responsible for the preparation, interpretation and modification of this HASP. Modifications to this HASP which may result in less stringent precautions cannot be undertaken by the SSO without the approval of the HSM. Specific duties of the HSM include:

- Writing, approving and amending the HASP;
- Advising the SSO on matters relating to health and safety;
- Recommending appropriate personal protective equipment (PPE) and air monitoring instrumentation to protect personnel from potential site hazards; and
- Maintaining regular contact with the SSO to evaluate site conditions and new information which might require modifications to the HASP.

1.2.3 Site Safety Officer

All field technicians are responsible for implementing the safety requirements specified in this HASP. One (1) technician will be designated to serve as the Site Safety Officer (SSO). The SSO will be appointed by the PM. The SSO will be on-site during all activities covered by this HASP. The SSO is responsible for enforcing the requirements of this HASP once work begins. The SSO has the authority to immediately correct all situations where non-compliance with this HASP is noted and to immediately stop work in cases where an immediate danger is perceived. Some of the SSO's specific responsibilities include:

- Ensuring that all personnel to whom this HASP applies have submitted a completed copy of the HASP Receipt and Acceptance Form (see Attachment A);
- Ensuring that all personnel to whom this HASP applies have attended a pre-entry briefing prior to entering the work zone;

- Maintaining a high level of health and safety consciousness among employees at the work site;
- Procuring and distributing the PPE needed for personnel involved with this project;
- Procuring the air monitoring instrumentation required and performing air monitoring for field activities;
- Verifying that all PPE and health and safety equipment is in good working order;
- Setting up and maintaining the work zones and ensuring personnel adhere to proper work zone safety measures;
- Notifying the PM of all non-compliance situations and stopping work in the event that an immediate danger situation is perceived;
- Monitoring and controlling the safety performance of all personnel within established restricted areas to ensure that required safety and health procedures are being followed;
- Conducting accident/incident investigations and preparing accident/incident investigation reports;
- Conducting the pre-entry briefing as required by Section 12.3 of this HASP; and
- Initiating emergency response procedures in accordance with Section 13.0 of this HASP.

1.2.4 Field Personnel and Covered Subcontractor Personnel

All field personnel covered by this HASP are responsible for following the health and safety procedures specified in this HASP and for performing their work in a safe and responsible manner. Some of the specific responsibilities of the field personnel are as follows:

- Reading this HASP in its entirety prior to the start of on-site work;
- Submitting a completed HASP Receipt and Acceptance Form (see Attachment A) and documentation of medical surveillance and training to the PM prior to the start of work;
- Attending the required pre-entry briefing prior to beginning on-site work;
- Bringing forth any questions or concerns regarding the content of this HASP to the PM or the SSO prior to the start of work;
- Reporting all accidents, injuries and illnesses, regardless of their severity, to the SSO; and
- Complying with the requirements of this HASP and the requests of the SSO.

1.2.5 Contractors

In addition to other requirements referenced in this HASP, all contractors are required to:

- Provide appropriate PPE for their employees;
- Ensure, via daily inspections, that their equipment is maintained in good working condition;
- Operate their equipment in a safe manner; and
- Appoint an on-site safety coordinator to interface with the SSO.

1.3 Modification of this HASP

The procedures in this HASP have been developed based on general knowledge of the site, proposed tasks, and anecdotal information from previous investigations at the site. Should additional information become available regarding potential on-site hazards, it may be necessary to modify this HASP. All proposed modifications to this HASP must be reviewed and approved by the HSM before such modifications are implemented.

Any significant modifications must be incorporated into the written document as addenda and the HASP must be re-issued. The PM will ensure that all personnel covered by this HASP receive copies of all issued addenda. Sign-off forms will accompany each addendum and must be signed by all personnel covered by the addendum. Sign-off forms will be submitted to the PM. The HASP addenda will be distributed during the regularly scheduled meetings so that they can be reviewed and discussed. Attendance forms will be collected during the meeting.

2.0 SITE DESCRIPTION AND HISTORY

Site Location and Current Usage

The Site consists of one (4) tax parcels of vacant rural and crop land surrounded. Currently, a historic lodge and two small cabins exist on the Site. The lodge is known as St. Hubert's Lodge and Club and dates back 100 years. The Site historically operated as an orchard, surrounded by vacant residential land, crop land, and occupied residential land. The Site generally slopes to the east.

- 626 Lattintown Road - Tax IDS #102.4-3-8.320, 102.4-2-12, 102.4-2-13, & 102.4-2-29
(152.55-acres)

Summary of Proposed Redevelopment Plan

The 626 Lattintown Road project is located on vacant rural land and crop land located in the Town of Marlborough. The proposed site redevelopment is for an upscale resort called the Marlborough Resort. Redevelopment will consist of renovations to the existing structures as well as the addition of new facilities.

Summary of the Work Performed Previously

PVE has conducted a Limited Surface Soil Evaluation at the subject property to determine if the historic orchard use of the subject property(ies) has impacted subsurface quality. Soil borings and sample collection occurred on June 16, 2023. Elevated concentrations of arsenic, lead, and mercury were detected in soil samples collected. In addition, elevated concentrations of pesticides were detected in soil samples collected. Previous sampling results are attached as Appendix C, to the Soil & Materials Management Plan, dated August 2024.

3.0 SITE REDEVELOPMENT

Following is an abbreviated summary of the tasks planned during Site redevelopment.

All work will be completed following industry standards and in accordance with applicable NYSDEC guidance documents, rules and regulations. PVE personnel will be responsible for reviewing the contents of this SMMP with on-site personnel and/or subcontractors to ensure the Plan is implemented properly. When PVE personnel are not on-site the personnel involved in redevelopment of the property have the responsibility of following the procedures outlined herein. In general, this SMMP outlines the handling and/or disposal of materials generated in the following categories:

1. ***Delineation Soil Borings*** – Supplemental soil sampling may further refine the areas requiring special handling/capping, additional details are provided in Section 3.1, of the SMMP.
2. ***Soil Containing Orchard Contaminants (Arsenic)*** – Excavation activities are proposed in areas of soil known to contain pesticides and metals at concentrations exceeding UUSCOs and/or RRSCOs as defined in 6 NYCRR 375-6.8(b). Soils in these areas will be handled and reused in accordance with this SMMP. Additional details are provided in Section 3.2, of the SMMP.
3. ***Non-Impacted Native Fill and Imported Fill*** – Soil disturbance during site redevelopment will include regrading, slope adjustment, and installation of utilities and foundations. Soil will be visually inspected by the site contractor during all excavation activities. Any fill material used as backfill for the excavation from which the fill material was taken, or as on-site fill in areas of similar physical characteristics, is exempt from regulation in accordance with 6 NYCRR 360.12(c)(1)(iv). Any fill observed to exhibit historical or visual evidence of contamination (including odors) will be placed under a minimum of 12 inches of Fill Type 1 or 2. Additional details are provided in Section 3.3, SMMP.

Any fill being disposed of off-site disposal will require proper characterization and facility approval.

4.0 HEALTH AND SAFETY

Field activities include mobilization, implementing the health and safety plan, excavation and soil sampling. Subcontractors will be used for marking private and public utilities, excavation activities and laboratory analysis of soil samples collected.

Site Meeting

PVE will be made available for meetings, given proper timing to schedule staff.

Mobilization

Dig Safely NY must be contacted to identify the locations of publicly owned buried utilities which lead to the subject property. Utility clearance will require 3 working days. The Site contractor will be responsible for obtaining all necessary permits.

Health and Safety

We anticipate all site work to be performed in Level D personal protective equipment (PPE). A Community Air Monitoring Plan (CAMP) will be implemented during ground intrusive work. If air monitoring data indicate an upgrade to Level C PPE is required, work will cease, and Site conditions will be re-evaluated prior to further activities.

5.0 CHEMICAL HAZARD ASSESSMENT AND CONTROLS

5.1 Chemical Hazards

The predominant contaminants potentially encountered in soil include the metal, arsenic. Chemical Hazard and MSD Sheets are provided in Attachment D.

5.1.1 *Chemical Hazards of Metals of Concern*

The metals detected in on-site soils and associated potential health effects are presented below. If dust control measures implemented during excavation/field activities cannot maintain dust levels at an acceptable level, the SSO will notify site workers of the condition. Personal Protective Equipment (PPE) summarized in Section 9.0 will be utilized.

Arsenic:

Exposure Routes: Inhalation, skin absorption, skin and/or eye contact.
Symptoms: Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, respiratory irritation, hyperpigmentation of skin, potential carcinogen.
Target Organs: Liver, kidneys, skin, lungs, and lymphatic system.
Cancer Site: Lung & lymphatic cancer.
OSHA PEL: 0.01 mg/m³ as an 8-hour time-weighted average (TWA).
ACGIH TLV: 0.01 mg/m³ as an 8-hour time-weighted average (TWA).

Lead:

Exposure Routes: Inhalation, ingestion, skin and/or eye contact.
Symptoms: Lassitude (weakness, exhaustion), insomnia; facial pallor; anorexia, weight loss, malnutrition; constipation, abdominal pain, colic; anemia; gingival lead line; tremor; paralysis; wrist, ankles; encephalopathy; kidney disease; irritation eyes; hypotension.
Target Organs: Eyes, gastrointestinal tract, central nervous system, kidneys, blood, and gingival tissue.
OSHA PEL: 0.050 mg/M³ as an 8-hour TWA.
ACGIH TLV: 0.050 mg/M³ as an 8-hour TWA

Mercury:

Exposure Routes: inhalation, skin absorption, ingestion, skin and/or eye contact.
Symptoms: Irritation of eyes and skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria.
Target Organs: Eyes, skin, respiratory system, central nervous system, kidneys.
OSHA PEL: 0.1 mg/m³ as an 8-hour TWA.
ACGIH TLV: 0.01 mg/m³ as an 8-hour TWA.

Dichlorodiphenyltrichloroethane (DDT), Dichlorodiphenyldichloroethylene (DDE), and Dichlorodiphenyldichloroethane (DDD):

Exposure Routes: inhalation, skin absorption, ingestion, skin and/or eye contact.

Symptoms: Irritation of eyes and skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss, proteinuria.

Target Organs: Eyes, skin, respiratory system, central nervous system, kidneys.

OSHA PEL: 1 mg/m³ as an 8-hour TWA.

ACGIH TLV: 1 mg/m³ as an 8-hour TWA.

Dieldrin:

Exposure Routes: inhalation, skin absorption, ingestion, skin and/or eye contact.

Symptoms: Irritation of eyes and skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss, proteinuria.

Target Organs: Eyes, skin, respiratory system, central nervous system, kidneys.

OSHA PEL: 0.25 mg/m³ as an 8-hour TWA.

ACGIH TLV: 0.1 mg/m³ as an 8-hour TWA.

5.2 Chemical Exposure and Control

5.2.1 Activities with Chemical Exposure Potential

The primary route of exposure during site activities in areas contaminated with inorganic metals is direct dermal contact, accidental or incidental ingestion, and inhalation of contaminant laden dust. The following work areas and site related activities are areas where chemical exposure is possible:

- Areas where excavation activities will be conducted.
- Contact with excavated soil and samples.
- Contact with purge water from excavation areas and samples.

5.2.2 Potential Chemical Exposures and Exposure Action Levels

5.2.2.1 Metals

Exposure potential exists during drilling borings and excavation of soils. Airborne dust can be an issue during soil excavation/drilling operations and skin contact can be anticipated during handling. Potential worker exposures exist, through accidental ingestion and direct skin contact during the drilling task, as airborne dusts can be generated. Semi-volatile organic compounds typically adhere to the airborne soil particles while metals are liberated as well. The Threshold Limit Values (TLVs) for Arsenic is 0.01 mg/m³ (10 ug/m³). The highest level of Arsenic

detected in the soil samples was 117 mg/kg. Assuming a uniform distribution and applying a safety factor, worker exposure can be controlled by establishing an action level of 0.5 mg/m³ for a sustained period of 10 minutes of total airborne dust, through engineering controls such as dust control. A direct reading dust monitor (e.g. TSI DustTrak) will be used as a surrogate to obtain real-time data to aid in monitoring the effectiveness of dust controls. The dust monitor will be set to sample total aerosols. Exposures above the action level on 0.5 mg/m³ for a sustained period of 10 minutes, will require the use of a National Institute for Occupational Safety & Health (NIOSH) approved half-face respirator with an N or P -100 filter.

Engineering controls such as wetting with an airless sprayer will be utilized as a control measure to suppress dust levels

5.2.3 Exposure Control

A combination of PPE and engineering controls will be utilized to control skin contact and airborne exposures. Engineering controls will consist of demarcating areas to be bored and allow required personnel only in the work areas. Dust suppression will be used whenever possible to keep dust from becoming airborne. PPE will be discussed in Section 9.

The following chemical exposure control measures will be implemented during the proposed site investigations:

- The SSO will perform air monitoring (see Section 5.0) in the worker's breathing zone to determine exposure to VOCs and Arsenic during field activities. If exposures exceed the action levels, respiratory protection, as discussed in Section 8.1, will be donned.
- To avoid direct dermal contact with potentially contaminated media, chemical protective clothing, as described in Section 9.1, will be required when collecting samples and decontaminating sampling equipment.
- Although highly unlikely, exposure to all of the contaminants of concern may occur via ingestion (hand-to-mouth transfer). The decontamination procedures described in Section 11.0 address personal hygiene issues that will limit the potential for contaminant ingestion.

6.0 PHYSICAL HAZARDS AND CONTROLS

6.1 Utility Hazards

6.1.1 *Underground Utilities*

New York law requires that, at least 48 hours prior to initiation of any subsurface work, a utility clearance be performed at the site. The Site contractor and excavation contractor will contact New York One Call (811) to request a mark-out of underground utilities in the proposed work areas, respectively. Work will not begin until the required utility clearances have been performed. Public utility clearance organizations typically do not mark-out underground utility lines that are located on private property. As such, the contractors must exercise due diligence and try to identify the location of any private utilities on the properties being investigated. This requirement can be fulfilled in several ways, including:

- obtaining as-built drawings for the areas being investigated from the property owner;
- visually reviewing each proposed excavation location with the property owner or knowledgeable site representative;
- identifying a no-drilling/digging zone; or
- hand digging in the proposed drilling/excavation locations if insufficient data is available to accurately determine the location of the utility lines.

Natural gas and municipal water transmission and service lines are likely to be along Lattintown Road and Ridge Road. A public and private mark-out of utilities leading to the subject property may be performed prior to redevelopment activities.

6.1.2 *Overhead Utilities*

Be particularly aware of overhead power lines in the work area. Any vehicle or mechanical equipment capable of having parts of its structure elevated (drill rig, crane, etc.) near energized overhead lines shall be operated so that a clearance of at least ten (10) feet is maintained. If the voltage is higher than 50kV, the clearance shall be increased four (4) inches for every 10kV over that voltage. Overhead utility lines are located along Lattintown Road and Ridge Road.

6.2 Traffic Concerns

If work is to be performed at locations where traffic may be a concern, the following precautions should be followed. All are designed to draw attention to the work and to warn other people of the activities.

- Notify the property owner of your work location, dates of work and the anticipated work times. Suggest the possibility of a detour around the work area.
- Wear a reflective orange safety vest. If work is being performed at dawn, dusk or evening, the vests must have reflective tape.

- Set up traffic cones 50 feet in front of the work area. “Work Zone” signs should also be placed in a conspicuous area to warn others of your presence.

6.3 Excavation Hazards

Use of excavators for redevelopment activities will require all personnel in the vicinity of the operating equipment to wear steel-toed boots, hardhats, hearing protection and safety eyewear. Personnel shall not remain in the vicinity of operating equipment unless it is required for their work responsibilities. Additionally, the following safety requirements must be adhered to:

- All machinery with exposed moving parts must be equipped with an operational emergency stop device. Operators and geologists must be aware of the location of this device. This device must be tested prior to job initiation and periodically thereafter.
- The operators must never leave the controls while the equipment is operating unless all personnel are kept clear of operating equipment.
- Only equipment that has been approved by the manufacturer may be used in conjunction with site equipment.

6.4 Noise Exposure

The use of heavy machinery will generate noise levels that will require the use of hearing protection in the immediate vicinity. Appropriate earmuffs or earplugs (i.e., with an NRR greater than 25 dB) should be worn to prevent overexposure. The general rule of thumb is that if you have to raise your voice to be understood by someone who is standing 3 to 5 feet away from you, the noise levels are likely to be above 85 dB and therefore require the use of hearing protection.

6.5 Back Safety

Using the proper techniques to lift and move heavy pieces of equipment, such as drums of investigation-derived wastes, are important to reduce the potential for back injury. The following precautions should be implemented when lifting or moving heavy objects.

- Use mechanical devices to move objects, such as drums of investigation derived wastes, that are too heavy to be moved manually.
- If mechanical devices are not available, ask another person to assist you.
- Bend at the knees, not the waist. Let your legs do the lifting.
- Do not twist while lifting.
- Bring the load as close to you as possible before lifting.
- Be sure the path you are taking while carrying a heavy object is free of obstructions and slip, trip and fall hazards.

6.6 Electrical Safety

If using portable tools that are electrically powered, follow the safety precautions listed below:

- Check to see that electrical outlets used to supply power during field operations is of the three (3) wire grounding type.
- Extension cords used for field operations should be of the three (3) wire grounding type and designed for hard or extra-hard usage. This type of cord uses insulated wires within an inner insulated sleeve and will be marked S, ST, STO, SJ, SJO or SJTO.
- NEVER remove the ground plug blade to accommodate ungrounded outlets.
- Do not use extension cords as a substitute for fixed or permanent wiring. Do not run extension cords through openings in walls, ceilings or floors.
- Protect the cord from becoming damaged if the cord is run through doorways, windows or across pinch points.
- Examine extension and equipment cords and plugs prior to each use. Damaged cords with frayed insulation or exposed wiring and damaged plugs with missing ground blades must be removed from service immediately.
- All portable or temporary wiring which is used outdoors or in other potentially wet or damp locations must be connected to a circuit that is protected by a ground fault circuit interrupter (GFCI). GFCI's are available as permanently installed outlets, as plug-in adapters and as extension cord outlet boxes. Do not continue to use a piece of equipment or extension cord that causes a GFCI to trip.
- When working in flammable atmospheres, be sure that the electrical equipment being used is approved for use in Class I, Division I atmospheres.
- Do not touch a victim who is still in contact with current. Separate the victim from the source using a dry, non-metallic item such as a broom stick or cardboard box. Be sure your hands are dry and you are standing on a dry surface. Turn off the main electrical power switch and then begin rescue efforts.

6.7 Thermal Stress

The hazards of both heat and cold stress are addressed in this HASP.

6.7.1 Heat Stress

Types of Heat Stress

Heat related problems include heat rash, fainting, heat cramps, heat exhaustion and heat stroke. Heat rash can occur when sweat isn't allowed to evaporate, leaving the skin wet most of the time and making it subject to irritation. Fainting may occur when blood pools to lower parts of the body and as a result, does not return to the heart to be pumped to the brain. Heat related fainting often occurs during activities that require standing erect and immobile in the heat for long periods of time. Heat cramps are painful spasms of the muscles due to excessive salt loss associated with profuse sweating. Heat exhaustion results from the loss of large amounts of fluid

and excessive loss of salt from profuse sweating. The skin will be clammy and moist and the affected individual may exhibit giddiness, nausea and headache.

Heat stroke occurs when the body's temperature regulatory system has failed. The skin is hot, dry, red and spotted. The affected person may be mentally confused and delirious. Convulsions could occur. Early recognition and treatment of heat stroke are the only means of preventing brain damage or death. A person exhibiting signs of heat stroke should be removed from the work area to a shaded area. The person should be soaked with water to promote evaporation. Fan the person's body to increase cooling. Immediate medical assistance is needed in case of heat stroke. Dial 911 to request an ambulance.

Increased body temperature and physical discomfort also promote irritability and a decreased attention to the performance of hazardous tasks.

Early Symptoms of Heat-Related Health Problems:

- decline in task performance
- incoordination
- decline in alertness
- unsteady walk
- excessive fatigue
- reduced vigilance
- muscle cramps
- dizziness

Susceptibility to Heat Stress Increases due to:

- lack of physical fitness
- lack of acclimation
- increased age
- dehydration
- obesity
- drug or alcohol use
- sunburn
- infection

People unaccustomed to heat are particularly susceptible to heat fatigue. First timers in PPE need to gradually adjust to the heat.

The Effect of Personal Protective Equipment

Sweating normally cools the body as moisture is removed from the skin by evaporation. However, the wearing of certain personal protective equipment (PPE), particularly chemical protective coveralls (e.g., Tyvek), reduces the body's ability to evaporate sweat and thereby regulate heat buildup. The body's efforts to maintain an acceptable temperature can therefore become significantly impaired by the wearing of PPE.

Measures to Avoid Heat Stress:

The following guidelines should be adhered to when working in hot environments:

- Establish work-rest cycles (short and frequent are more beneficial than long and seldom).

- Identify a shaded, cool rest area.
- Rotate personnel, alternate job functions.
- Water intake should be equal to the sweat produced. Most workers exposed to hot conditions drink less fluids than needed because of an insufficient thirst. Do not depend on thirst to signal when and how much to drink. For an 8-hour workday, 50 ounces of fluids should be consumed.
- Eat lightly salted foods or drink salted drinks such as Gatorade to replace lost salt.
- Save most strenuous tasks for non-peak heat hours such as the early morning or at night.
- Avoid alcohol during prolonged periods of heat. Alcohol will cause additional dehydration.
- Avoid double shifts and/or overtime.

The implementation and enforcement of the above-mentioned measures will be the joint responsibility of the PM and SSO. Potable water and fruit juices should be made available each day for the field team.

Heat Stress Monitoring Techniques

Site personnel should regularly monitor their heart rate as an indicator of heat strain by the following method:

Check radial pulse rates by using fore- and middle fingers and applying light pressure to the pulse in the wrist for one (1) minute at the beginning of each rest cycle. If the pulse rate exceeds 110 beats/minute, shorten the next work cycle by one-third and keep the rest period the same. If, after the next rest period, the pulse rate still exceeds 110 beats/minute, shorten the work cycle again by one-third.

6.7.2 Cold Stress

Types of Cold Stress

Cold injury is classified as either localized, as in frostbite, frostnip or chilblain; or generalized, as in hypothermia. The main factors contributing to cold injury are exposure to humidity and high winds, contact with wetness and inadequate clothing.

The likelihood of developing frostbite occurs when the face or extremities are exposed to a cold wind in addition to cold temperatures. The freezing point of the skin is about 30°F. The fluids around the cells of the body tissue freeze, causing the skin to turn white. This freezing is due to exposure to extremely low temperatures. As wind velocity increases, heat loss is greater and frostbite will occur more rapidly.

Symptoms of Cold Stress

The first symptom of frostbite is usually an uncomfortable sensation of coldness, followed by numbness. There may be a tingling, stinging or aching feeling in the affected area. The most vulnerable parts of the body are the nose, cheeks, ears, fingers and toes.

Symptoms of hypothermia, a condition of abnormally low body temperature, include uncontrollable shivering and sensations of cold. The heartbeat slows and may become irregular, the pulse weakens, and the blood pressure changes. Pain in the extremities and severe shivering can be the first warning of dangerous exposure to cold.

Maximum severe shivering develops when the body temperature has fallen to 95°F. This must be taken as a sign of danger and exposure to cold must be immediately terminated. Productive physical and mental work is limited when severe shivering occurs.

Methods to Prevent Cold Stress

When the ambient temperature, or a wind chill equivalent, falls to below 40°F, site personnel who must remain outdoors should wear insulated coveralls, insulated boot liners, hard hat helmet liners and insulated hand protection. Wool mittens are more efficient insulators than gloves. Keeping the head covered is very important, since 40% of body heat can be lost when the head is exposed. If it is not necessary to wear a hard hat, a wool knit cap provides the best head protection. A face mask may also be worn.

Persons should dress in several layers rather than one single heavy outer garment. The outer piece of clothing should ideally be wind and waterproof. Clothing made of thin cotton fabric or synthetic fabrics such as polypropylene is ideal since it helps to evaporate sweat. Polypropylene is best at wicking away moisture while still retaining its insulating properties. Loosely fitting clothing also aids in sweat evaporation. Denim is not a good protective fabric. It is loosely woven which allows moisture to penetrate. Socks with a high wool content are best. If two pairs of socks are worn, the inner sock should be smaller and made of cotton, polypropylene or a similar type of synthetic material that wicks away moisture. If clothing becomes wet, it should be taken off immediately and a dry set of clothing put on.

If wind conditions become severe, it may become necessary to shield the work area temporarily. The SSO and the PM will determine if this type of action is necessary. Heated break trailers or a designated area that is heated should be available if work is performed continuously in the cold at temperatures, or equivalent wind chill temperatures of 20°F.

Dehydration occurs in the cold environment and may increase the susceptibility of the worker to cold injury due to significant change in blood flow to the extremities. Drink plenty of fluids but limit the intake of caffeine.

7.0 AIR MONITORING

7.1 Monitoring Parameters and Action Levels

Based on the existing Site data, it is not expected that significant levels of organic vapors will be encountered during the Site work. However, air monitoring will be conducted for arsenic vapor and dust particulates. Air monitoring of the breathing zone at the source of ground intrusive work in addition to upwind and downwind of ground intrusive work will be conducted continuously during all ground intrusive activities to assure proper health and safety protection for the team, workers, passersby and adjoining community.

Fugitive dust generation that could affect Site workers, Site occupants, or the public is expected because the majority of work will be conducted in dry soil. Soil that is not moist will be wetted as appropriate to minimize visible dust emissions. Particulate monitoring will be conducted at the perimeter of the Site (upwind and downwind stations). If dust levels are observed at 100 micrograms per cubic meter greater than the background concentrations for a duration exceeding 15 or more minutes, work activities will be suspended until dust levels are diminished to an acceptable level.

All monitoring instruments must be calibrated and maintained periodically. Calibration and on-site maintenance records will be kept in the field logbook. The operator must understand the limitations and possible sources of errors for each instrument. It is important that the operator checks that the instrument responds properly to the substances it was designed to monitor. Dust monitors must be calibrated at least once a week. The specific instructions for calibration and maintenance provided for each instrument should be followed.

See Appendix B of the SMMP for further detail.

Air monitoring results will be recorded in the field book during site activities and made available for review.

The following table summarizes **air monitoring action levels** established for the site:

Contaminants	Action level	Actions
<i>Dusts</i>	Reading less than 0.5 mg/m³ or above background for a sustained period of 15 minutes in the WBZ.	Measure and record the upwind background concentration. Continue work in level D protection.
	Reading greater than 5.0 mg/m³ or above background for a sustained period of 15 minutes in the WBZ	Discontinue work. Employ dust suppression using a water spray, collect additional airborne dust measurements. If concentrations remain greater than 0.5 mg/m ³ , work can resume in Level C protection with respiratory protection equipped with P-100 cartridges.

7.2 Direct Reading Instruments

Dust levels will be monitored using a particulate air monitoring instrument (PM10).

7.3 Personal Air Sampling

Due to the potential exposure to lead dust, OSHA standard 1926.62 requires the collection of initial personal air samples during the proposed activities. Attachment E provides a summary of the lead dust exposure monitoring requirements.

7.4 Recordkeeping

Air monitoring results will be recorded in the field book during construction activities and made available for review upon request.

All personal exposure monitoring data pursuant to measuring exposure to lead dust must be maintained for the employee's duration of employment plus 30 years in accordance with OSHA standard 1910.1020, Access to Employee Exposure and Medical Records.

8.0 PERSONAL PROTECTIVE EQUIPMENT

Personal protective equipment (PPE) will be worn during site activities to prevent on-site personnel from being injured by the safety hazards posed by the site and/or the activities being performed. In addition, chemical protective clothing will be worn to prevent direct dermal contact with the site's chemical contaminants.

In general, field activities will be conducted in Level D PPE, as described in the table below. PPE will be upgraded to Level C if air monitoring demonstrates VOCs, or dust concentrations in the breathing zone exceeding the action levels outlined in Section 8.1.

If the concentration of volatile organics which can be detected with a PID equals or exceeds the specified action level (100 ppm) all field personnel associated with the project will immediately retreat to a location up-wind of the source of contamination. At this point the SSO must consult with the HSM, who will review the condition with PVE home office staff to discuss appropriate actions.

If employees' exposure to lead dust exceed the PEL, the employees will be required to wear half-mask, air-purifying respirator equipped with organic vapor/PM100 cartridges.

8.1 Chemical Protective Clothing

The following tables describe the Level D and Level C PPE and chemical protective clothing to be worn for general site activities and for certain specific tasks.

Level D PPE

PPE Item	Utility Mark Out	Site Redevelopment Excavations	Soil Borings
Hard Hat	✓	✓	✓
Steel Toed Safety Shoes	✓	✓	✓
Safety Glasses with Side shields		✓	✓
Traffic Vests	*	*	*
Inner PVC/Outer Nitrile Gloves		✓	✓
Hearing Protection		✓	✓

Level C PPE

PPE Item	Utility Mark Out	Site Redevelopment Excavations	Soil Boring
Hard Hat	✓	✓	✓
Steel Toed Safety Shoes	✓	✓	✓
Safety Glasses with Side shields	✓	✓	✓
Traffic Vests	*	*	*
Inner PVC/Outer Nitrile Gloves	✓	✓	✓
Hearing Protection		✓	✓
Half-Face Respirator	✓	✓	✓
Tyvek Protective Suit	✓	✓	✓

* - when working in or near street

8.2 Respiratory Protection

Level D PPE: No respiratory protection required. Air monitoring devices will be used to determine when PPE will be upgraded to include respiratory protection (Section 6.2.2 and 8.0).

Level C PPE: Half-mask, air-purifying respirator equipped with organic vapor/PM100 cartridges.

Respiratory protection will also be worn if odors become objectionable at any time, if respiratory tract irritation is noticed. All on-site personnel who are expected to wear respiratory protection must have successfully passed a qualitative or quantitative fit-test within the past year for the brand, model and size respirator they plan to wear during the proposed activities.

9.0 SITE CONTROL

9.1 Work Zones

To prevent both exposure of unprotected personnel and migration of contamination due to tracking by personnel or equipment, work areas along with personal protective equipment requirements will be clearly identified. Work areas or zones will be designated as suggested in the "Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities," NIOSH/OSHA/USCG/EPA, November 1985. They recommend the areas surrounding each of the work areas to be divided into three zones:

- Exclusion or "Hot" Zone
- Contamination Reduction Zone (CRZ)
- Support Zone

9.1.1 Exclusion Zone

An exclusion zone (work zone) will be established around each boring location. This zone will move as work progresses to each boring location. This zone should be large enough (i.e. 20-foot radius) to protect unprotected personnel from contact with vapors or dusts that may arise from these operations as well as the physical hazards associated with the operation of heavy equipment. Traffic cones or tape will be used to demarcate the active exclusion zone.

All personnel entering the exclusion zone must be trained in accordance with the requirements defined in Section 12.2 of this HASP and must wear the prescribed level of personal protective equipment.

9.1.2 Contamination Reduction Zone

The decontamination zone will be established adjacent to the exclusion zone. Personnel will remove contaminated gloves and other disposable items in this area and place them in a plastic bag until they can be properly disposed of. Reusable equipment, if any, will be decontaminated with tap water, deionized water, methanol, nitric acid and a liquid detergent solution.

9.1.3 Support Zone

At this site, the support zone will include the area outside of the decontamination zone.

9.2 Safety Practices

The following measures are designed to augment the specific health and safety guidelines provided in this plan.

- Eating, drinking, chewing gum or tobacco, smoking or any practice that increases the probability of hand-to-mouth transfer and ingestion of materials is prohibited in the immediate work area and the decontamination zone.
- Smoking is prohibited in all work areas. Matches and lighters are not allowed in these areas.
- Hands and face must be thoroughly washed upon leaving the work area and before eating, drinking or any other activities.
- Beards or other facial hair that interfere with respirator fit are prohibited.
- The use of alcohol or illicit drugs is prohibited during the conduct of field operations.
- All equipment must be decontaminated or properly discarded before leaving the site in accordance with the project work plan.

10.0 DECONTAMINATION

Decontamination of equipment and personnel potentially exposed to lead must be in accordance with lead standard 29 CFR 1926.62. See Attachment E for further details.

10.1 Personal Decontamination

Proper decontamination is required of all personnel before leaving the site. Decontamination will occur within the contamination reduction zone. Disposable PPE will be removed in the decontamination zone and placed in lined garbage bags.

If worn, respirators will be cleaned after each use with respirator wipe pads and will be stored in plastic bags after cleaning.

Regardless of the type of decontamination system required, a container of potable water and liquid soap will be made available so employees can wash their hands before leaving the site for lunch or for the day.

10.2 Equipment Decontamination

Reusable equipment, if any, will be decontaminated with tap water, deionized water, methanol, nitric acid and a liquid detergent solution.

11.0 MEDICAL MONITORING AND TRAINING REQUIREMENTS

11.1 Medical Monitoring

Due to the potential exposure to lead dust, OSHA standard 1926.62 requires baseline medical surveillance for personnel working at the site. Medical monitoring requirements are summarized in Attachment E.

11.2 Health and Safety Training

Although not a requirement for the activities at this site, personnel performing activities covered by this HASP are recommended to have completed the appropriate training requirements specified in 29 CFR 1910.120(e). Each individual should have completed an annual 8-hour refresher-training course and/or initial 40-hour training course within the last year prior to performing any work on the sites covered by this HASP.

Furthermore, if employee exposure monitoring results determine lead exposure to be present, employees should be trained in accordance with 1926.62. See Attachment E for details.

11.3 Pre-Entry Briefing

The SSO will conduct a pre-entry briefing before site activities begin. HASP receipt and acceptance sheets will be collected at this meeting. Short safety refresher meetings will be conducted, as needed, throughout the duration of the project. Attendance of the pre-entry meeting is mandatory and will be documented by the SSO. An attendance form is presented in Attachment B.

12.0 EMERGENCY RESPONSE

OSHA defines emergency response as any "response effort by employees from outside the immediate release area or by other designated responders (i.e., mutual-aid groups, local fire departments, etc.) to an occurrence which results, or is likely to result in an uncontrolled release of a hazardous substance." On-site personnel shall not participate in any emergency response where there are potential safety or health hazards (i.e., fire, explosion, or chemical exposure). Response actions will be limited to evacuation and medical/first aid as described within this section below. As such this section is written to comply with the requirements of 29 CFR 1910.38 (a).

The basic elements of an emergency evacuation plan include:

- employee training,
- alarm systems,
- escape routes,
- escape procedures,
- critical operations or equipment,
- rescue and medical duty assignments,
- designation of responsible parties,
- emergency reporting procedures and
- methods to account for all employees after evacuation.

12.1 Employee Training

Employees must be instructed in the site-specific aspects of emergency evacuation. On-site refresher or update training is required anytime escape routes or procedures are modified or personnel assignments are changed. The SSO must verify the specific evacuation procedures that the facility prefers contractors follow in the event of a facility-related emergency. This information will be communicated to the field team during the pre-entry briefing.

12.2 Alarm Systems/Emergency Signals

An emergency communication system must be in effect at all sites. The most simple and effective emergency communication system in many situations will be direct verbal communication. Each site must be assessed at the time of initial site activity and periodically as the work progresses. Verbal communication must be supplemented anytime voices cannot be clearly perceived above ambient noise levels (i.e., noise from drilling probe) and anytime a clear line-of-sight cannot be easily maintained among all personnel because of distance, terrain or other obstructions.

Verbal communication will be adequate to warn on-site personnel of hazards associated with the immediate work area. However, the two-person sampling team may be split up during the day to

expedite sampling. Each team member will be equipped with a cellular phone to ensure immediate communication can occur between each other. These phones can also be used to contact local emergency responders.

12.3 Escape Routes and Procedures

The SSO will verify the escape routes from each work area with a facility representative. Assembly areas must also be identified. The escape routes and assembly areas will be reviewed during the pre-entry briefing. All personnel on site are responsible for knowing the escape route from the site and where to assemble after evacuation.

12.4 Rescue and Medical Duty Assignments

The phone numbers of the police and fire departments, ambulance service, local hospital, and project representatives are provided in the emergency reference sheet and on the cover of this HASP. This sheet will be posted in the site vehicle.

In the event an injury or illness requires more than first aid treatment, the SSO will accompany the injured person to the medical facility and will remain with the person until release or admittance is determined. The SSO will relay all appropriate medical information to the on-site project manager and the HSM.

If the injured employee can be moved from the accident area, he or she will be brought to the contamination reduction zone where their PPE will be removed. If the person is suffering from a back or neck injury the person will not be moved and the requirements for decontamination do not apply. The SSO must familiarize the responding emergency personnel about the nature of the site and the injury. If the responder feels that the PPE can be cut away from the injured person's body, this will be done on-site. If this is not feasible, decontamination will be performed after the injured person has been stabilized.

12.5 Designation of Responsible Parties

The SSO is responsible for initiating emergency response. In the event the SSO cannot fulfill this duty, the PM or HSO will take charge.

12.6 Employee Accounting Method

The SSO is responsible for identifying all personnel on-site at all times. On small, short duration jobs this can be done informally as long as accurate accounting is possible.

12.7 Accident Reporting and Investigation

Any incident (other than minor first aid treatment) resulting in injury, illness or property damage requires an accident investigation and report. The investigation should be conducted as soon as emergency conditions are under control. The purpose of the investigation is not to attribute

blame but to determine the pertinent facts so that repeat or similar occurrences can be avoided. An accident investigation form is presented in Attachment C of this HASP. The Supervisor of the injured personnel and the HSM should be notified immediately of the injury.

If a subcontractor personnel is injured, they are required to notify the SSO. Once the incident is under control, the subcontractor will submit a copy of their company's accident investigation report to the SSO.

EMERGENCY CONTACTS

Ambulance:	Notify 911
Emergency Room:	Notify 911
Fire:	Notify 911
Client Representative:	Conor Tarbell (845) 454-2544
Police:	Notify 911
Hospital:	Nuvance Health Vassar Brothers Medical Center 45 Reade Place Poughkeepsie, New York 12601 (845) 454-8500

ATTACHMENT A

Health and Safety Plan Receipt and Acceptance Form

Health and Safety Plan Receipt and Acceptance Form

Site Redevelopment 626 Lattintown Road, Town of Marlborough, Ulster County, New York

I have received a copy of the Health and Safety Plan prepared for the above-referenced site and activities. I have read and understood its contents and I agree that I will abide by its requirements.

ATTACHMENT B

Health and Safety Plan Pre-Entry Briefing Attendance Form

Health and Safety Plan Pre-Entry Briefing Attendance Form

Site Redevelopment 626 Lattintown Road, Town of Marlborough, Ulster County, New York

Briefing Conducted By: _____

Date Performed: _____

ATTACHMENT C

Supervisor's Accident Investigation Report Form

SUPERVISOR'S ACCIDENT INVESTIGATION REPORT

Injured Employee _____ Job Title _____

Home Office _____ Division/Department _____

Date/Time of Accident _____

Location of Accident _____

Witnesses to the Accident _____

Injury Incurred? _____ Nature of Injury _____

Engaged in What Task When Injured? _____

Will Lost Time Occur? _____ How Long? _____ Date Lost Time Began _____

Were Other Persons Involved/Injured? _____

How Did the Accident Occur? _____

What Could Be Done to Prevent Recurrence of the Accident? _____

What Actions Have You Taken Thus Far to Prevent Recurrence? _____

Supervisor's Signature _____ Title _____ Date _____

Reviewer's Signature _____ Title _____ Date _____

Note: If the space provided on this form is insufficient, provide additional information on a separate page and attach. The completed accident investigation report must be submitted to the Health and Safety Manager within two days of the occurrence of the accident.

ATTACHMENT D

**Chemical Hazard and MSDS Sheets
(Available Upon Request)**

ATTACHMENT E

Summary of OSHA Lead in Construction Standard (29CFR1926.62)

(a) Scope

This standard covers all construction work where an employee may be exposed to lead, including metallic lead, inorganic lead compounds, and organic lead soaps, but not organic lead compounds.

(b) Definitions

An airborne lead level of 30 $\mu\text{g}/\text{m}^3$ is called the Action Level (AL). Having airborne lead concentrations at or above the AL triggers certain health and safety measures described in this standard.

(c) Permissible Exposure Limit (PEL)

The 8-hour Permissible Exposure Limit (PEL) is 50 $\mu\text{g}/\text{m}^3$ of airborne lead. If the workday is longer than 8 hours, the PEL is 400/number of hours worked per day. The employer must ensure that no employee is exposed to lead at concentrations over the PEL.

(d) Exposure Assessment

Exposure assessment must be performed in all workplaces where employees may be exposed to lead.

(d)(1) Protection of Employees During Assessment of Exposure

Three sets of specified tasks (often referred to as “trigger tasks”) trigger basic protective measures where lead is present, until the employer performs an employee exposure assessment. (Exposure assessment is an initial determination via air monitoring, or previous monitoring of a very similar job within the last 12 months.) For all three sets of tasks, employers are required to provide the following basic protective measures until air monitoring indicates exposure levels are at or below the PEL:

- Appropriate respiratory protection (type of respirator is specified according to assumed airborne lead level)
- Appropriate personal protective equipment
- clean work clothes such as coveralls at least weekly (daily if greater than 200 $\mu\text{g}/\text{m}^3$ lead in air); gloves, hats, shoes or disposable shoe coverlets, face shields, vented goggles or other appropriate equipment.
- Change areas with separate storage facilities for work and street clothes - the employer shall assure that employees do not leave the workplace with work clothes or equipment.
- Hand washing facilities - the employer shall assure that employees wash their hands and face at the end of each work shift.
- Biological monitoring - consisting of initial or baseline blood sampling for lead and zinc protoporphyrin (ZPP).
- Training - includes Hazard Communication, respirator and lead training.

(d)(2) Exposure Assessment (Air monitoring)

When air monitoring is conducted, the employer shall collect full-shift personal samples representative of an employee’s regular, daily exposure to lead. Monitoring should include at least

one sample for each job classification in each work area either for each shift or for the shift with the highest exposure level.

(d)(3) Basis of Initial Determination

The basis of initial determination, or initial assessment of employee exposure, will be employee exposure monitoring results and relevant considerations (e.g., observations, complaints) with the following two exceptions:

- Where the employer has previously monitored for lead exposures, and the data were obtained within the past 12 months during closely similar workplace operations and conditions, the employer may rely on the earlier results; or
- Where the employer has objective data, demonstrating that a particular product or material containing lead or specific process, operation or activity involving lead cannot result in an employee exposure to lead at or above the AL during processing, use or handling, the employer may rely upon such data instead of implementing initial monitoring.

(d)(6) Frequency of Exposure Assessment

If the initial determination shows exposures less than the AL, no further assessment is needed until there has been a change of equipment, process, control, personnel or a new task has been initiated.

If the initial determination is at or above the AL but at or below the PEL, then monitoring shall be done at least every six months.

If the initial determination is above the PEL, then monitoring shall be done quarterly.

(e) Methods of Compliance

Exposures over the PEL shall be reduced through engineering, work practice and administrative controls, to the extent feasible. Respirators may be used to supplement other controls.

Prior to the commencement of any job where exposures may reach the PEL, the employer shall establish and implement a written compliance program, describing the lead-emitting activities and the means by which exposures will be controlled.

The compliance program shall provide for frequent, regular jobsite inspections by a person who is capable of identifying lead hazards and has authorization to take prompt corrective measures.

Where mechanical ventilation is used, the employer shall evaluate the performance as necessary to maintain effectiveness.

(f) Respiratory Protection

Where respirators are used, they shall be selected on the basis of air monitoring results, with the minimum level of respirator as indicated in Table 1 below. Until monitoring results are available, the appropriate respirator is determined according to the assumed exposure associated with the task being performed, as per subsection (d) (2).

Where respirators are used, the employer shall institute a complete, written respiratory protection program in accordance with OSHA's Respiratory Protection Standard, 1910.134. The program shall outline procedures for selection, medical evaluations, use, training, cleaning and sanitizing, storage, inspection and maintenance of respirators. The program shall be evaluated by regular inspections.

(g) Protective Work Clothing and Equipment

When an employee is exposed to lead above the PEL (without regard to whether a respirator is worn), or to lead compounds which may cause irritation, the employer shall provide and assure the employee uses appropriate protective work clothing, such as coveralls or other full-body work clothing, gloves, hats, shoes or shoe coverings, and face shields, goggles or other protective equipment as needed.

Work clothing shall be provided at least weekly for employees exposed over the PEL, except daily for those exposed at levels higher than 200 µg/m³.

The employer shall provide for the cleaning or disposal of protective clothing and equipment. Clothing to be laundered must be placed in a closed container, labeled to indicate it contains lead, and the launderer must be notified of the potentially harmful effects of lead exposure.

Cleaning of protective clothing or equipment by blowing, shaking or any other means that disperses lead into the air is prohibited.

(h) Housekeeping

All surfaces shall be maintained as free as practicable of accumulations of lead.

Vacuums equipped with toxic dust-removing HEPA filters are the preferred method of cleaning surfaces where lead accumulates. Other types of vacuums may not be used.

Shoveling, dry or wet sweeping, and brushing may be used only where HEPA vacuuming has been tried and found to be ineffective.

Use of compressed air for cleaning is prohibited, unless there is a ventilation system to capture the dust created by the compressed air.

(i) Hygiene Facilities, Practices and Regulated Areas

The employer shall assure that all employees exposed to lead above the PEL wash their hands and face prior to eating, drinking, smoking or applying cosmetics.

The employer shall provide, for ALL employees exposed to lead, adequate hand washing facilities, and assures (in the absence of shower facilities) that employees wash their hands and face at the end of the work shift.

In areas where employees are exposed to lead above the PEL, the employer shall assure that food or beverages are not present or consumed, tobacco products are not present or used and cosmetics are not applied.

Employees exposed to lead above the PEL shall be provided with clean change areas with separate storage facilities for work and street clothing, to prevent cross-contamination.

The employer shall assure that employees do not leave the workplace wearing any protective clothing or equipment that was worn during the work shift.

Shower facilities, soap and towels shall be provided, where feasible, for employees exposed to lead above the PEL, and the employer shall assure that these employees shower at the end of the work shift.

Employees exposed to lead above the PEL shall be provided with a clean lunchroom or eating area. The employer shall assure that the lunch area is kept free from lead accumulation and that employees do not enter the lunch area with protective work clothing or equipment that has not been cleaned by vacuuming or other method that limits dispersion of lead dust.

(j) Medical Surveillance

The employer shall assure that the lead medical program (including all medical examinations and procedures performed) is under the supervision of a licensed physician.

The employee has the right to seek a second medical opinion regarding the lead medical evaluation, at the expense of the employer, and if necessary a third physician may be requested to resolve any disagreements between the first two.

Prophylactic chelation, the routine use of chelating drugs to lower blood lead levels in persons occupationally exposed to lead is prohibited.

(j)(2) Biological Monitoring

Initial blood sampling and analysis for blood lead levels (BLL) and zinc protoporphyrin (ZPP) are required for employees performing any of the specified trigger tasks, or for any employee exposed to an air lead level at or above the AL for at least 1 day.

Employees who are or may be exposed at or above the AL for more than 30 days in any consecutive 12 months, must be enrolled in a medical surveillance program, including BLL and ZPP at least every 2 months for the first 6 months, and every 6 months thereafter.

Any employee with a BLL at or above 40 µg/dl shall have a BLL and ZPP every two months until two consecutive samples are less than 40 µg/dl.

Any employee with a BLL above 50 µg/dl shall receive a follow-up BLL within 2 weeks after the employer receives the results of the first test.

For those employees temporarily removed from their jobs involving lead exposure (see subsection (k), Medical Removal Protection), a BLL and ZPP must be provided every month during the removal period.

(j)(3) Medical Examinations and Consultations

A medical exam shall be provided annually for all employees who had a BLL at or above 40 µg/dl during the preceding 12 months.

A medical exam shall be provided to any employee who reports signs or symptoms related to lead poisoning, desires medical advice regarding the effects of lead exposure on the employee's ability to produce a healthy child, is pregnant, or has difficulty breathing while wearing a respirator.

A medical exam shall be provided as medically appropriate to any employee removed from his/her usual job involving exposure to lead.

(k) Medical Removal Protection (MRP)

(k)(1) Temporary Medical Removal and Return

The employer shall remove an employee from work involving exposure to lead at or above the AL on each occasion that a BLL and follow-up test is at or above 50 µg/dl.

An employee who has been removed due to an elevated BLL can return to his/her former job after having two consecutive BLLs at or below 40 µg/dl.

(l) Employee Information and Training

The employer shall provide information about lead hazards, according to the Hazard Communication Standard 1910.1200, to all employees exposed to lead.

For all employees exposed to lead at or above the AL on any day, exposed to lead compounds that cause eye or skin irritation, or who perform any of the specified trigger tasks, the employer shall provide initial (pre-placement) training that includes: the content of this standard and appendices; the operations that may cause lead exposure at or above the AL; the purpose, proper selection, fitting, use and limitations of respirators; the purpose and description of the medical surveillance program, including the adverse health effects of lead exposure (especially on reproduction); the engineering controls and work practices relevant to the employee's job assignment; the contents of any compliance plan in effect; the location of regulated areas; the prohibition against routine use of chelation agents; the employee's right of access to records.

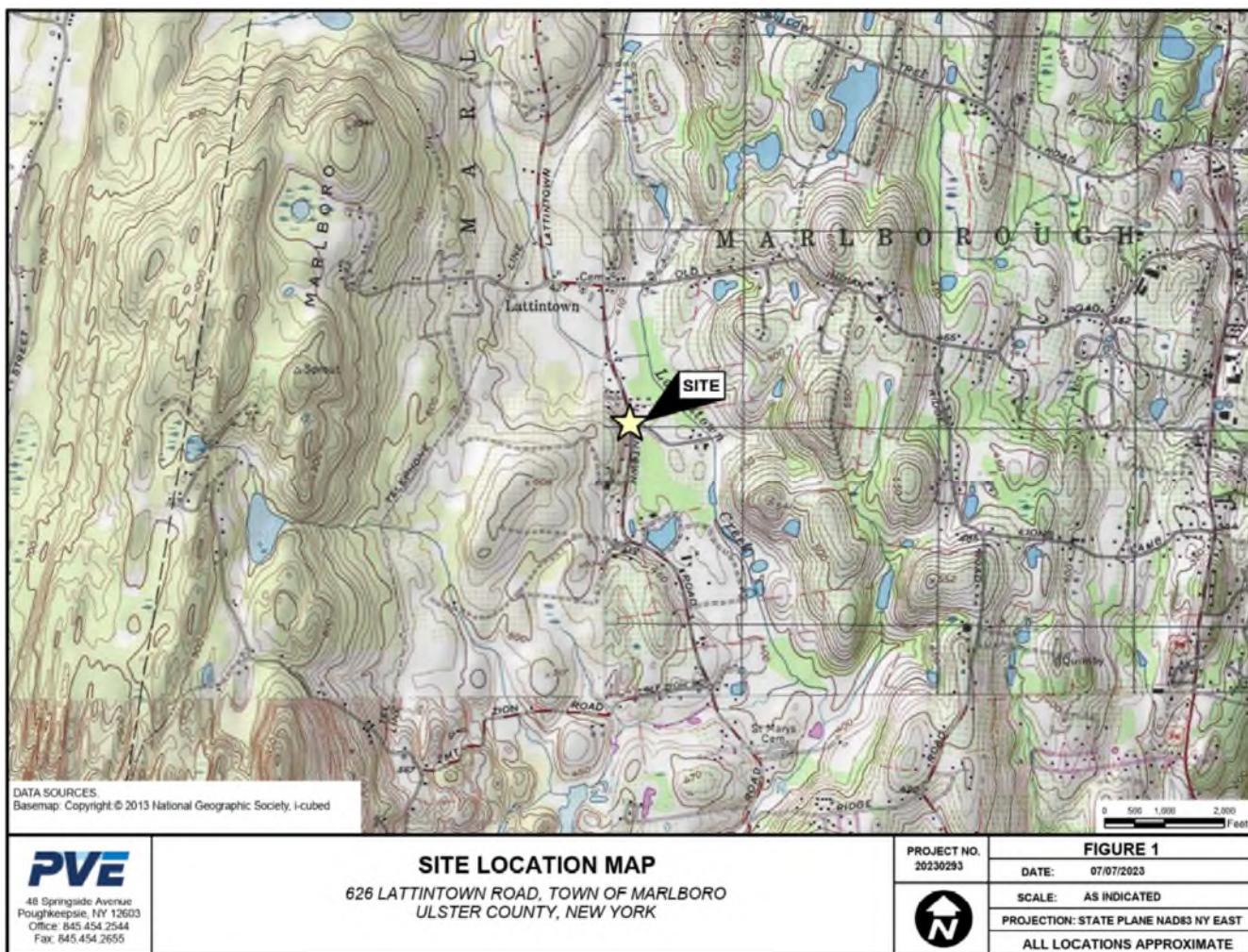
For all employees exposed to lead at or above the AL on any day, the above training must be provided annually.

(m) Signs

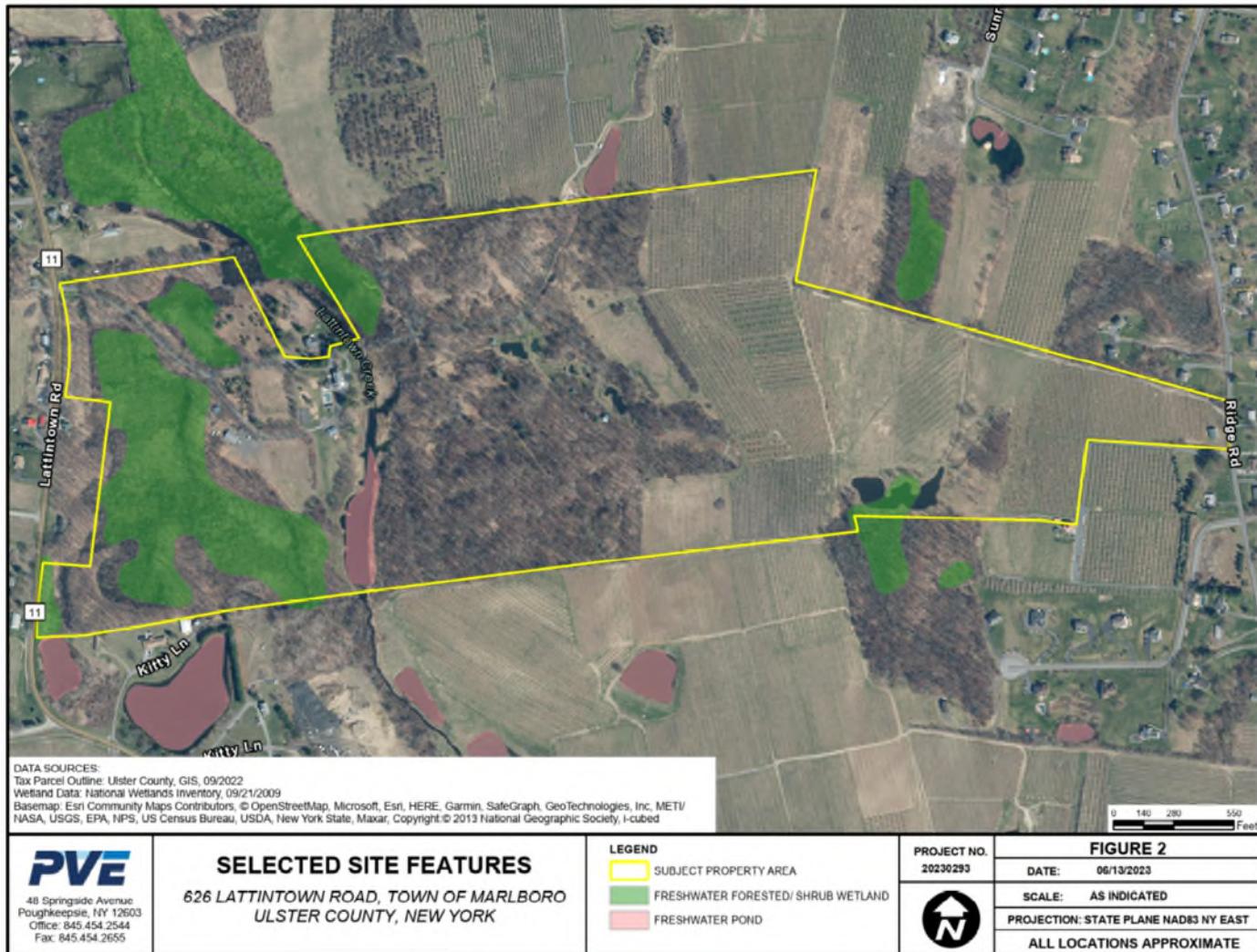
In regulated areas (work areas where employee exposure is above the PEL and/or trigger tasks are performed), the employer shall post a warning sign with the words:

WARNING: LEAD WORK AREA
POISON - NO SMOKING OR
EATING

(n) Record Keeping


The employer is required to maintain detailed records on exposure assessment, including any objective data used for exemption from air monitoring requirements, medical surveillance and medical removals.

(o) Observation of Monitoring


The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee lead exposure. Observers shall be provided with and use protective equipment if required in the area, receive an explanation of the measurement procedures, observe all steps related to monitoring, and receive copies of the results.

FIGURES

Figure # 1 – Site Location

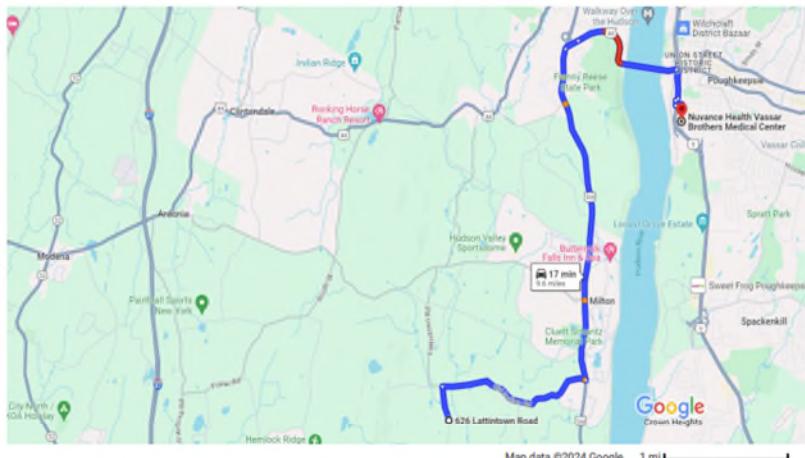

Figure # 2 – Site Features Map

Figure #3 – Route to Nearest Hospital

Google Maps

626 Lattintown Rd, Marlboro, NY 12542 to Nuvance Health Vassar Brothers Medical Ctr, 45 Reade Pl, Poughkeepsie, NY 12601

626 Lattintown Rd
 Marlboro, NY 12542

⚠ This route has tolls.

Take Old Indian Rd to Rte 9W N

- 5 min (2.7 mi)
- ↑ 1. Head north on Lattintown Rd toward Old Ford Rd
- 0.4 mi
- ↗ 2. Turn right onto Old Indian Rd
- 2.2 mi

Follow Rte 9W N and US-44 E to Pine Street Spur/Prospect St in Poughkeepsie. Take the exit toward Columbia St/Rinaldi Blvd from US-9 S

- 10 min (6.7 mi)
- ⟲ 3. Turn left onto Rte 9W N
- 4.3 mi
- ↗ 4. Use the right lane to take the ramp to Mid Hudson Bridge/Poughkeepsie
- 0.2 mi
- ↑ 5. Continue onto US-44 E
- ⚠ Toll road**
- 1.7 mi
- ↗ 6. Use the right lane to merge onto US-9 S via the ramp to Wappingers Falls/Hyde Park
- 0.4 mi
- ⟲ 7. Take the exit toward Columbia St/Rinaldi Blvd
- 213 ft

Drive to Columbia St

- 36 sec (0.2 mi)
- ⟲ 8. Turn left onto Pine Street Spur/Prospect St
- 344 ft
- ⟲ 9. Turn left onto Columbia St
- 0.1 mi

Nuvance Health Vassar Brothers Medical Ctr
 45 Reade Pl Poughkeepsie NY 12601

APPENDIX B

CAMP

Appendix 1A
New York State Department of Health
Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during non-intrusive activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. “Periodic” monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

APPENDIX C
LIMITED SURFACE SOIL
EVALUATION, BY PVE LLC

July 7, 2023

Michael Achenbaum
Via Email: michael@theghg.com

Re: **Limited Surface Soil Evaluation:** 626 Lattintown Road, Town of Marlboro, Ulster County, New York 12542
Tax IDs: #95.2-2-3.210, 95.2-2-9, 95.2-2-10, & 95.12-1-5
PVE File #20230293

Dear Mr. Achenbaum:

Partridge Venture Engineering, PC doing business as PVE Engineering (“PVE”), has conducted a Limited Surface Soil Evaluation at the above-referenced property (the Site) in accordance with our approved scope of work dated June 15, 2023. PVE conducted this evaluation to determine the presence or absence of contaminants in surface soil that may have originated from the application of pesticides during prior use of the Site as a commercial orchard. Below is a summary of field activities, analytical data, and recommendations.

1.0 FIELD ACTIVITIES

1.1 Soil Borings and Sample Collection

PVE personnel completed a total of twelve (12) soil borings on June 16, 2023. Soil borings were installed using a track-mounted Geoprobe™ 54DT drill rig equipped with 4-foot long, 2 ¼-inch diameter stainless steel core barrel (macro-cores) fitted with PVC liners (Figure 3). Sampling equipment was properly decontaminated prior to each sampling location. Up to four (4) soil samples were collected from each boring location at 1-foot increments below the vegetative cover. The two (2) deeper interval soil samples (2-3-feet and 3-4-feet) were placed on hold at the laboratory pending analysis and review of the 0-1-foot and 1-2 foot interval soil sample results. A total of forty-eight (48) soil samples were collected and submitted to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) approved laboratory for analysis of the following:

- Part 375 List Pesticides via USEPA Method 8081;
- Part 375 List Herbicides via USEPA Method 8151;
- Mercury via USEPA Method 7471; &
- Arsenic & Lead via USEPA Method 6010.

Based on preliminary analytical results, an additional six (6) deeper interval soil samples were authorized for a total of thirty (30) soil samples. The remaining soil samples on hold were discarded by the laboratory. Soil boring locations were backfilled to grade with soil cuttings.

1.2 Drinking Water Sample Collection

Additionally, PVE personnel collected one (1) drinking water sample from a spigot along the exterior of the “office” structure. Reportedly, this well supplying water to this spigot also supplies potable water to on-site structures. This sample was dispensed into laboratory provided glassware and submitted to a NYSDOH ELAP certified laboratory for analysis of the following:

- Arsenic via USEPA Method 200.8;
- Glyphosate via USEPA Method 547;
- Herbicides via USEPA Method 515;
- Mercury via USEPA Method 245.1;
- Pesticides via USEPA Methods 531.2, 549.2, 504.1, and 548; &
- Semi Volatiles via USEPA Method 525.3

2.0 ANALYTICAL RESULTS

Soil sample results are summarized in Table 1 and are compared to Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Restricted Residential Soil Cleanup Objectives (RRSCOs) as defined in 6 NYCRR Part 375. Drinking water results are summarized in Table 2 and are compared to NYSDOH Drinking Water Maximum Contaminant Levels (MCLs). Analytical reports are attached.

2.1 Soil Results

2.1.1 *Metals*

Metals were detected in all twenty-four (24) soil samples collected and submitted for analysis. Twenty-two (22) of those soil samples contained one (1) or more metals at concentrations exceeding UUSCOs; fifteen (15) of those locations also contained one (1) metal, arsenic, at concentrations exceeding its RRSCO. UUSCO exceedances are summarized below:

- SB-1
 - 0-1-foot
 - **Arsenic (26.3 mg/kg)**
 - 1-2-foot
 - **Arsenic (16.2 mg/kg)**
 - 2-3-foot
 - Arsenic (14.3 mg/kg)
- SB-2
 - 0-1-foot
 - **Arsenic (31.2 mg/kg)**
 - Lead (78.4 mg/kg)
 - Mercury (0.314 mg/kg)
- SB-3
 - 0-1-foot
 - **Arsenic (26.0 mg/kg)**
 - Lead (67.9 mg/kg)
 - 1-2-foot
 - **Arsenic (17.3 mg/kg)**
 - 2-3-foot
 - Arsenic (15.2 mg/kg)
- SB-4
 - 0-1-foot
 - **Arsenic (21.5 mg/kg)**
 - 1-2-foot

- **Arsenic (21.9 mg/kg)**
 - 2-3-foot
 - **Arsenic (20.6 mg/kg)**
- SB-5
 - 0-1-foot
 - Arsenic (15.3 mg/kg)
 - 1-2-foot
 - **Arsenic (17.5 mg/kg)**
 - 2-3-foot
 - Arsenic (14.6 mg/kg)
- SB-6
 - 0-1-foot
 - Arsenic (13.5 mg/kg)
 - 1-2-foot
 - Arsenic (14.3 mg/kg)
- SB-7
 - 0-1-foot
 - **Arsenic (117 mg/kg)**
 - Lead (358 mg/kg)
 - 1-2-foot
 - **Arsenic (21.9 mg/kg)**
- SB-8
 - 0-1-foot
 - **Arsenic (54.0 mg/kg)**
 - Lead (207 mg/kg)
 - 1-2-foot
 - Arsenic (14.2 mg/kg)
- SB-9
 - 0-1-foot
 - Arsenic (13.1 mg/kg)
- SB-10
 - 0-1-foot
 - **Arsenic (21.2 mg/kg)**
 - 1-2-foot
 - Arsenic (13.9 mg/kg)
- SB-11
 - 0-1-foot
 - **Arsenic (36.6 mg/kg)**
 - Lead (82.6 mg/kg)
 - 1-2-foot
 - **Arsenic (17.7 mg/kg)**
 - 2-3-foot
 - Arsenic (15.7 mg/kg)
- SB-12
 - 0-1-foot
 - **Arsenic (20.9 mg/kg)**
 - 1-2-foot

- Arsenic (13.6 mg/kg)

Bold text indicates those compounds also exceeding RRSCOs.

2.1.2 Pesticides & Herbicides

Pesticides were detected in nineteen (19) soil samples collected and submitted for analysis. Eighteen (18) of those soil samples contained one (1) or more pesticides at concentrations exceeding UUSCOs; none of these locations detected pesticides at concentrations exceeding RRSCOs. No herbicides were detected in any of the soil samples collected. UUSCO exceedances are summarized below:

- SB-1
 - 0-1-foot
 - P,P'-DDE (12.4 mg/kg)
- SB-2
 - 0-1-foot
 - P,P'-DDE (69.8 mg/kg)
 - P,P'-DDT (12.1 mg/kg)
 - 1-2-foot
 - P,P'-DDE (6.19 mg/kg)
- SB-3
 - 0-1-foot
 - P,P'-DDE (66.0 mg/kg)
 - P,P'-DDT (9.52 mg/kg)
 - 1-2-foot
 - P,P'-DDE (12.0 mg/kg)
- SB-5
 - 0-1-foot
 - P,P'-DDE (7.67 mg/kg)
- SB-7
 - 0-1-foot
 - Dieldrin (33.2 mg/kg)
 - P,P'-DDD (12.8 mg/kg)
 - P,P'-DDE (96.0 mg/kg)
 - P,P'-DDT (79.2 mg/kg)
 - 1-2-foot
 - P,P'-DDE (27.8 mg/kg)
 - P,P'-DDT (4.56 mg/kg)
- SB-8
 - 0-1-foot
 - Dieldrin (33.2 mg/kg)
 - P'-DDD (6.78 mg/kg)
 - P,P'-DDE (56.7 mg/kg)
 - P,P'-DDT (40.9 mg/kg)
 - 1-2-foot
 - Dieldrin (5.09 mg/kg)

- SB-9
 - 0-1-foot
 - P,P'-DDE (13.1 mg/kg)
 - 1-2-foot
 - P,P'-DDE (15.1 mg/kg)
- SB-10
 - 0-1-foot
 - Dieldrin (19.0 mg/kg)
 - P,P'-DDE (17.9 mg/kg)
 - P,P'-DDT (7.74 mg/kg)
 - 1-2-foot
 - Dieldrin (5.49 mg/kg)
 - P,P'-DDE (7.11 mg/kg)
- SB-11
 - 0-1-foot
 - P,P'-DDE (12.6 mg/kg)
 - 1-2-foot
 - P,P'-DDE (3.59 mg/kg)
- SB-12
 - 0-1-foot
 - P,P'-DDD (3.60 mg/kg)
 - P,P'-DDE (74.0 mg/kg)
 - P,P'-DDT (12.8 mg/kg)
 - 1-2-foot
 - P,P'-DDE (7.09 mg/kg)

Bold text indicates those compounds also exceeding RRSCOs.

2.2 Drinking Water Results

No metals, pesticides or herbicides were detected in the drinking water sample collected.

3.0 CONCLUSIONS

1. Metals were detected in all twenty-four (24) soil samples collected and submitted for analysis. Twenty-two (22) of the twenty-four (24) soil samples contained concentrations of arsenic exceeding UUSCOs. Only arsenic (common pesticide additive) was detected in fifteen (15) of the soil samples at concentrations exceeding its RRSCO.
2. Pesticides were detected in nineteen (19) soil samples collected and submitted for analysis. Eighteen (18) of those soil samples contained one (1) or more pesticides at concentrations exceeding UUSCOs; none of these locations detected pesticides at concentrations exceeding RRSCOs. No herbicides were detected in any of the soil samples collected.
3. Contaminants exceeding the Site's intended use (RRSCO) were detected in the shallower sample intervals (0-2-feet bgs) with exception to one (1) location (SB-4).

4. No orchard related contaminants were detected in the drinking water sample.

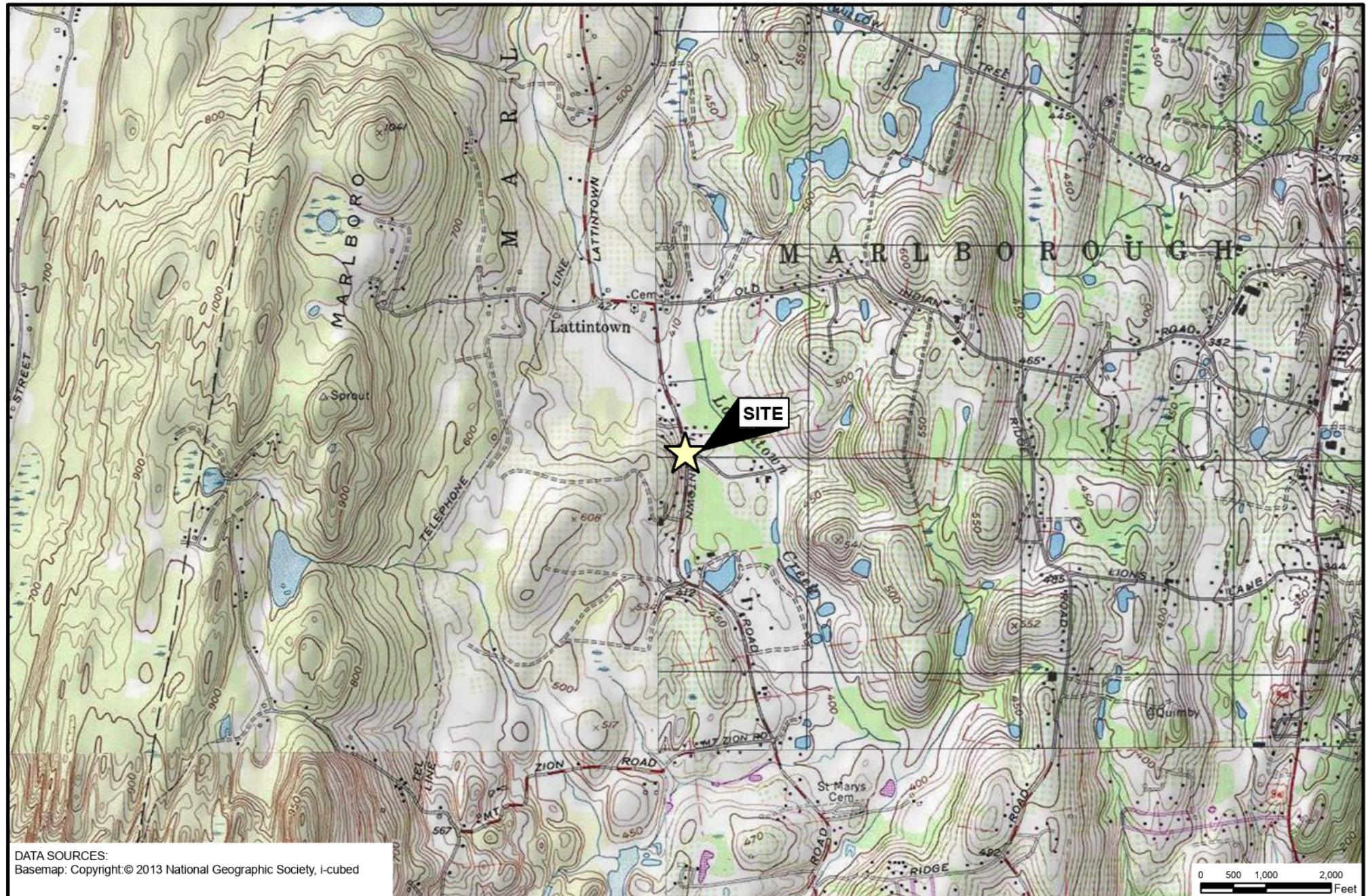
4.0 RECOMMENDATIONS

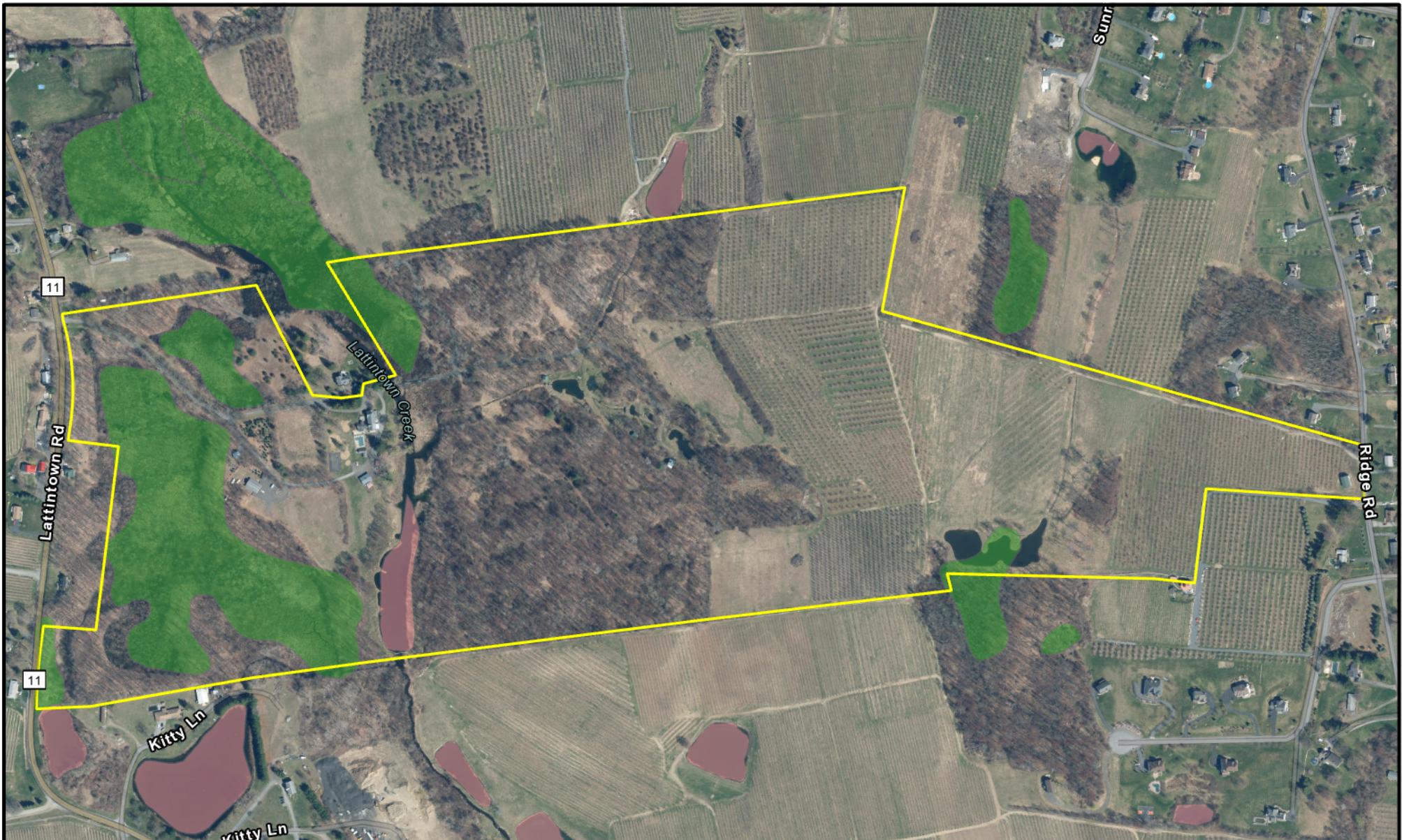
Based on the information assembled during completion of this evaluation, we offer the following recommendations:

1. Surface soils throughout the Site contain orchard use related contaminants at concentrations exceeding the Site's intended restricted residential use criteria. The location and depths of these contaminants are depicted in Figure 4. Contaminated soils exceeding RRSCOs should be handled in accordance with a site-specific Soils and Materials Management Plan (SMMP). Based on the intended use, areas of the site where contaminants do not exceed RRSCOs can be managed and reused without restriction.
2. Based on the results of samples collected and summarized herein, contaminated soils can remain on-site and be reused if placed under a clean soil cover (certified in accordance with NYSDEC DER-10), hardscape areas (asphalt, building foundations, concrete walkways, etc.) or stockpiled in a portion of the site made inaccessible to the public via covering, appropriate fencing and/or signage.

If you have any questions, please do not hesitate to contact us.

Sincerely,


PVE ENGINEERING



Conor B. Tarbell, QEP
Regional Director of Environmental Services

FIGURES

DATA SOURCES:

Tax Parcel Outline: Ulster County, GIS, 09/2022

Wetland Data: National Wetlands Inventory, 09/21/2009

Basemap: Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, New York State, Maxar, Copyright © 2013 National Geographic Society, i-cubed

0 140 280 550
Feet

48 Springside Avenue
Poughkeepsie, NY 12603
Office: 845.454.2544
Fax: 845.454.2655

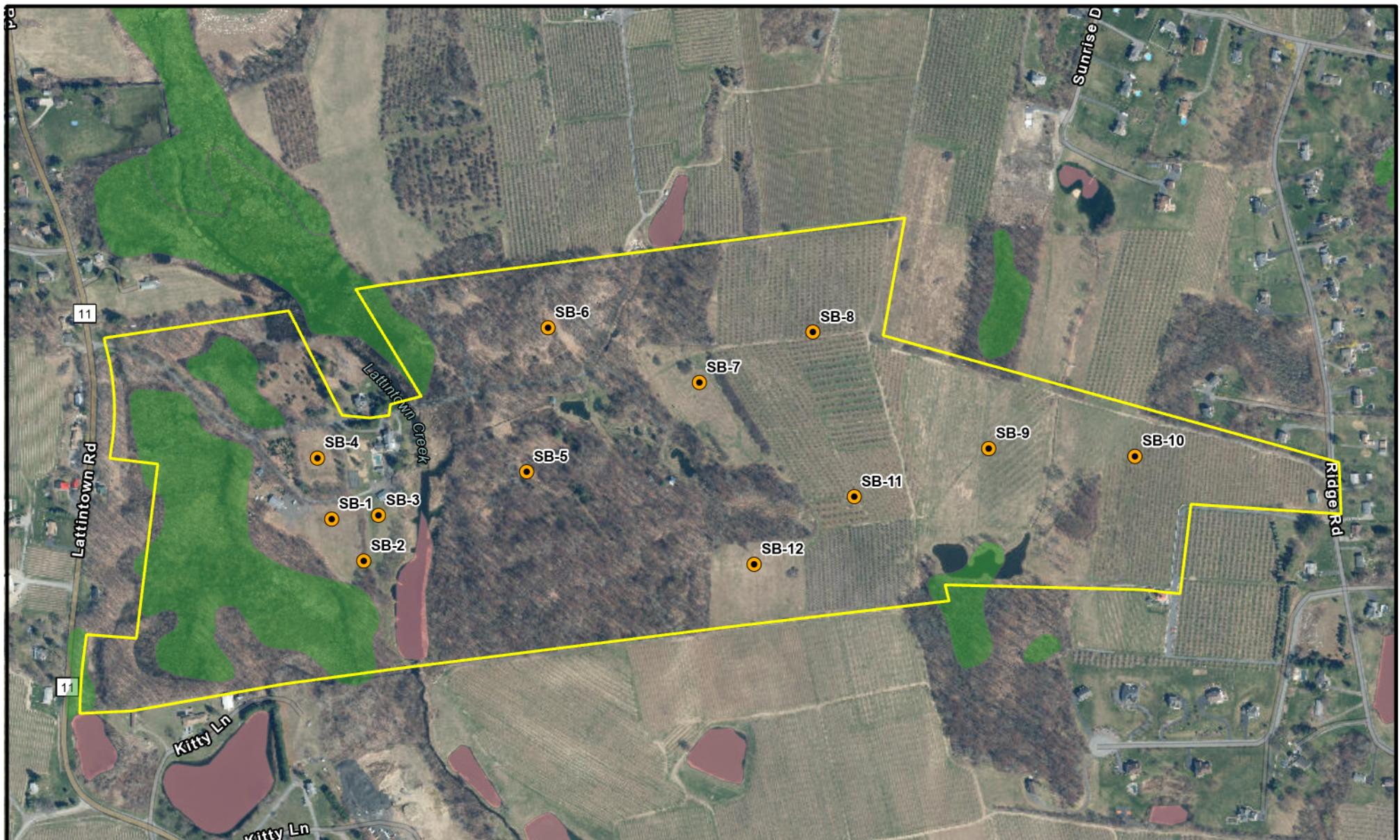
SELECTED SITE FEATURES

626 LATTINTOWN ROAD, TOWN OF MARLBORO
ULSTER COUNTY, NEW YORK

LEGEND

- SUBJECT PROPERTY AREA
- FRESHWATER FORESTED/ SHRUB WETLAND
- FRESHWATER POND

PROJECT NO.
20230293


FIGURE 2

DATE: 06/13/2023

SCALE: AS INDICATED

PROJECTION: STATE PLANE NAD83 NY EAST

ALL LOCATIONS APPROXIMATE

DATA SOURCES:

Tax Parcel Outline: Ulster County, GIS, 09/2022

Wetland Data: National Wetlands Inventory, 09/21/2009

Basemap: Esri Community Maps Contributors, © OpenStreetMap, Microsoft, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, New York State, Maxar, Copyright © 2013 National Geographic Society, i-cubed

0 150 290 580
Feet

48 Springside Avenue
Poughkeepsie, NY 12603
Office: 845.454.2544
Fax: 845.454.2655

SAMPLE LOCATIONS

626 LATTINTOWN ROAD, TOWN OF MARLBORO
ULSTER COUNTY, NEW YORK

LEGEND

● SOIL BORING

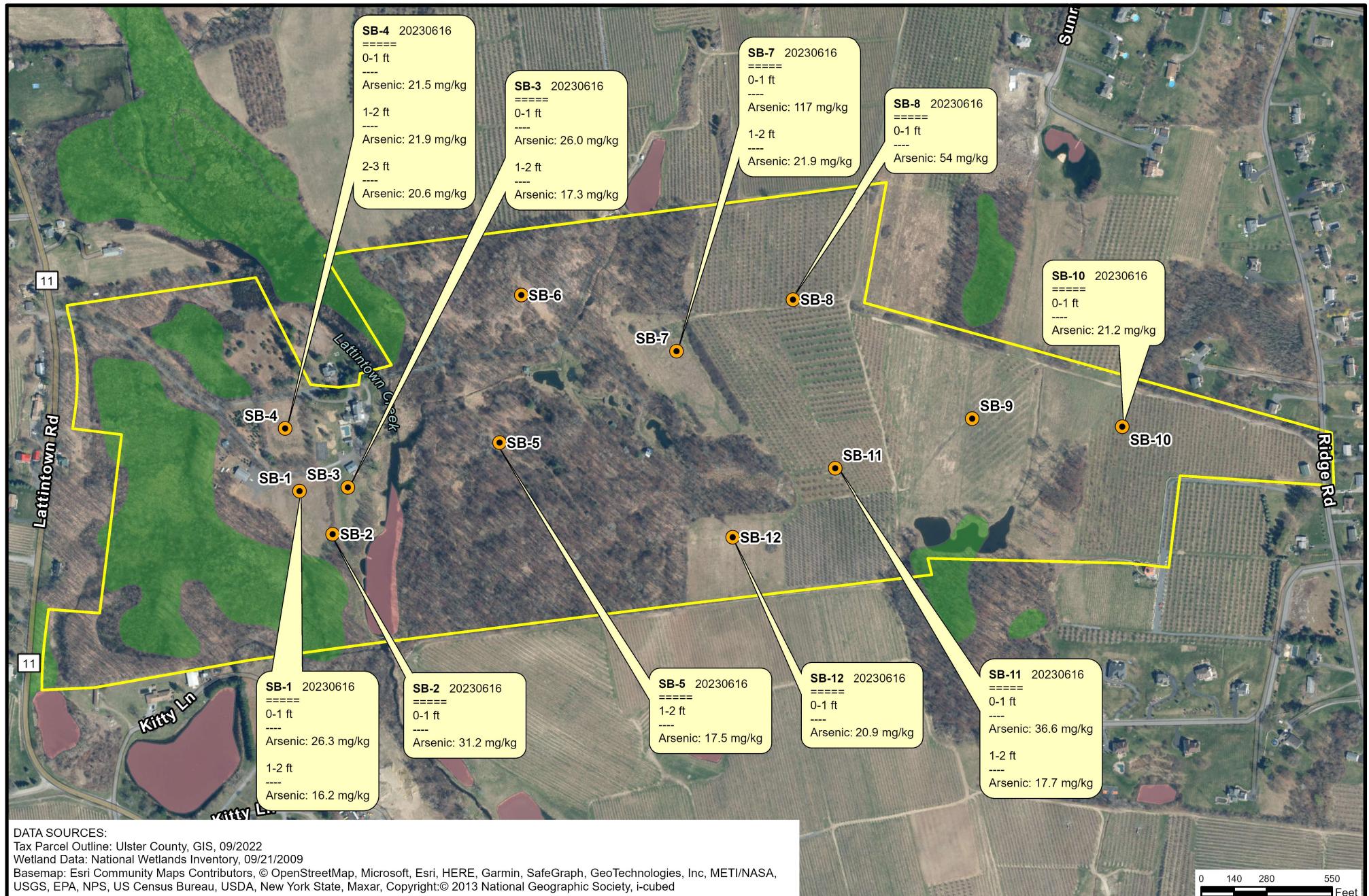
■ SUBJECT PROPERTY AREA

■ FRESHWATER FORESTED/ SHRUB WETLAND

■ FRESHWATER POND

PROJECT NO.
20230293

FIGURE 3


DATE: 07/07/2023

SCALE: AS INDICATED

PROJECTION: STATE PLANE NAD83 NY EAST

ALL LOCATIONS APPROXIMATE

PVE
 48 Springside Avenue
 Poughkeepsie, NY 12603
 Office: 845.454.2544
 Fax: 845.454.2655

SAMPLE LOCATIONS EXCEEDING RRSCOs IN SOIL
 626 LATTINTOWN ROAD, TOWN OF MARLBORO
 ULSTER COUNTY, NEW YORK

LEGEND
 ● SOIL BORING
 □ SUBJECT PROPERTY AREA
 ■ FRESHWATER FORESTED/SHRUB WETLAND
 ■ FRESHWATER POND

PROJECT NO.
 20230293

FIGURE 4

DATE:	06/27/2023
SCALE:	AS INDICATED
PROJECTION: STATE PLANE NAD83 NY EAST	
ALL LOCATIONS APPROXIMATE	

TABLES

Table 1 - Pesticides, Arsenic, Lead & Mercury in Shallow Soil Samples
 Compared to UUSCOs & RRSCOs per NYSDEC Part 375
 626 Lattintown Road, Town of Marlborough, Ulster County, NY
 PVE #20230293

				Date Sampled	6/16/2023 SB-1 (0-1)		6/16/2023 SB-1 (1-2)		6/16/2023 SB-1 (2-3)		6/16/2023 SB-2 (0-1)		6/16/2023 SB-2 (1-2)		6/16/2023 SB-3 (0-1)		6/16/2023 SB-3 (1-2)		6/16/2023 SB-3 (2-3)		6/16/2023 SB-4 (0-1)		6/16/2023 SB-4 (1-2)		6/16/2023 SB-4 (2-3)													
				Location Sample ID	6/16/2023 SB-1 0-1 20230616	6/16/2023 SB-1 1-2 20230616	6/16/2023 SB-1 2-3 20230616	6/16/2023 SB-2 0-1 20230616	6/16/2023 SB-2 1-2 20230616	6/16/2023 SB-3 0-1 20230616	6/16/2023 SB-3 1-2 20230616	6/16/2023 SB-3 2-3 20230616	6/16/2023 SB-4 0-1 20230616	6/16/2023 SB-4 1-2 20230616	6/16/2023 SB-4 2-3 20230616																							
Method	Analyte	CAS RN	UUSCOs	RRSCOs	Unit	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q									
SW6010	Arsenic	7440-38-2	13	16	mg/kg	26.3	mg/kg		16.2	mg/kg		14.3	mg/kg		31.2	mg/kg		11.8	mg/kg		26.0	mg/kg		17.3	mg/kg		15.2	mg/kg		21.5	mg/kg		21.9	mg/kg		20.6	mg/kg	
SW6010	Lead	7439-92-1	63	400	mg/kg	55.2	mg/kg		25.6	mg/kg		NS			78.4	mg/kg		19.6	mg/kg		67.9	mg/kg		33.6	mg/kg		NS			38.0	mg/kg		43.3	mg/kg		NS		
SW7473	Mercury	7439-97-6	0.18	0.81	mg/kg	0.158	mg/kg		ND< 0.0322	mg/kg	U	NS			0.314	mg/kg		0.0473	mg/kg		0.118	mg/kg		0.0742	mg/kg		NS			0.0497	mg/kg		0.0551	mg/kg		NS		
SW8081	Aldrin	309-00-2	5	97	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Alpha Bhc (Alpha Hexachlorocyclohexane)	319-84-6	20	480	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Alpha Endosulfan	959-98-8	2400	24000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Beta Bhc (Beta Hexachlorocyclohexane)	319-85-7	36	360	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Beta Endosulfan	33213-65-9	2400	24000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	cis-Chlordane	5103-71-9	94	4200	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	3	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Delta BHC (Delta Hexachlorocyclohexane)	319-86-8	40	100000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Dieldrin	60-57-1	5	200	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Endosulfan Sulfate	1031-07-8	2400	24000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Endrin	72-20-8	14	11000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Gamma Bhc (Lindane)	58-89-9	100	1300	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	Heptachlor	76-44-8	42	2100	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.64	ug/kg	U	ND< 1.6	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	P,P'-DDD	72-54-8	3.3	13000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			2.55	ug/kg	P	ND< 1.6	ug/kg	U	2.91	ug/kg	U	ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	P,P'-DDE	72-55-9	3.3	8900	ug/kg	12.4	ug/kg		3.27	ug/kg	U	NS			69.8	ug/kg		6.19	ug/kg		66.0	ug/kg		12.0	ug/kg		NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8081	P,P'-DDT	50-29-3	3.3	7900	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			12.1	ug/kg		ND< 1.6	ug/kg	U	9.52	ug/kg		ND< 1.61	ug/kg	U	NS			ND< 1.6	ug/kg	U	ND< 1.64	ug/kg	U	NS		
SW8151	Silvex (2,4,5-TP)	93-72-1	3800	100000	ug/kg																																	

Table 1 - Pesticides, Arsenic, Lead & Mercury in Shallow Soil Samples
 Compared to UUSCOs & RRSCOs per NYSDEC Part 375
 626 Lattintown Road, Town of Marlborough, Ulster County, NY
 PVE #20230293

				Date Sampled	6/16/2023 SB-5 (0-1) SB-5 0-1 20230616		6/16/2023 SB-5 (1-2) SB-5 1-2 20230616		6/16/2023 SB-5 (2-3) SB-5 2-3 20230616		6/16/2023 SB-6 (0-1) SB-6 0-1 20230616		6/16/2023 SB-6 (1-2) SB-6 1-2 20230616		6/16/2023 SB-7 (0-1) SB-7 0-1 20230616		6/16/2023 SB-7 (1-2) SB-7 1-2 20230616		6/16/2023 SB-7 (2-3) SB-7 2-3 20230616		6/16/2023 SB-8 (0-1) SB-8 0-1 20230616		6/16/2023 SB-8 (1-2) SB-8 1-2 20230616											
Method	Analyte	CAS RN	UUSCOs	RRSCOs	Unit	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q								
SW6010	Arsenic	7440-38-2	13	16	mg/kg	15.3	mg/kg		17.5	mg/kg		14.6	mg/kg		13.5	mg/kg		14.3	mg/kg		117	mg/kg		21.9	mg/kg		12.5	mg/kg		54.0	mg/kg		14.2	mg/kg
SW6010	Lead	7439-92-1	63	400	mg/kg	35.1	mg/kg		23.7	mg/kg		NS			29.7	mg/kg		22.7	mg/kg		358	mg/kg		43.5	mg/kg		NS			207	mg/kg		37.4	mg/kg
SW7473	Mercury	7439-97-6	0.18	0.81	mg/kg	0.0666	mg/kg		ND< 0.032	mg/kg	U	NS			0.0526	mg/kg		ND< 0.0328	mg/kg	U	0.0822	mg/kg		0.0342	mg/kg		NS			0.170	mg/kg		0.0350	mg/kg
SW8081	Aldrin	309-00-2	5	97	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			1.74	ug/kg		ND< 1.63	ug/kg
SW8081	Alpha Bhc (Alpha Hexachlorocyclohexane)	319-84-6	20	480	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Alpha Endosulfan	959-98-8	2400	24000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Beta Bhc (Beta Hexachlorocyclohexane)	319-85-7	36	360	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Beta Endosulfan	33213-65-9	2400	24000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	cis-Chlordane	5103-71-9	94	4200	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Delta BHC (Delta Hexachlorocyclohexane)	319-86-8	40	100000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Dieldrin	60-57-1	5	200	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	33.2	ug/kg		3.48	ug/kg		NS			60.4	ug/kg		5.09	ug/kg
SW8081	Endosulfan Sulfate	1031-07-8	2400	24000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Endrin	72-20-8	14	11000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Gamma Bhc (Lindane)	58-89-9	100	1300	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	Heptachlor	76-44-8	42	2100	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.62	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.61	ug/kg	U	ND< 1.63	ug/kg
SW8081	P,P'-DDD	72-54-8	3.3	13000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	12.8	ug/kg		ND< 1.64	ug/kg	U	NS			6.78	ug/kg		ND< 1.63	ug/kg
SW8081	P,P'-DDE	72-55-9	3.3	8900	ug/kg	7.67	ug/kg		ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	96.0	ug/kg		27.8	ug/kg		NS			56.7	ug/kg		ND< 1.63	ug/kg
SW8081	P,P'-DDT	50-29-3	3.3	7900	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	NS			ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	79.2	ug/kg		4.56	ug/kg		NS			40.9	ug/kg		ND< 1.63	ug/kg
SW8151	Silvex (2,4,5-TP)	93-72-1	3800	100000	ug/kg	ND< 22.3	ug/kg	U	ND< 21.3	ug/kg	U	NS			ND< 22.4	ug/kg	U	ND< 21.7	ug/kg	U	ND< 21.6	ug/kg	U	ND< 21.3	ug/kg	U	NS			ND< 21.2	ug/kg	U	ND< 21.5	ug/kg

Notes:
 Standards are for respective Soil Cleanup Objectives per NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Restricted Residential Use Soil Cleanup Objectives (RRSCOs);
 Yellow shading designates those compounds detected at concentrations exceeding UUSCOs;
 Red shading designates those compounds detected at concentrations exceeding RRSCOs;
 NS = Not sampled for; &
 ND & U = Not detected at MDL for sample.

Table 1 - Pesticides, Arsenic, Lead & Mercury in Shallow Soil Samples
 Compared to UUSCOs & RRSCOs per NYSDEC Part 375
 626 Lattintown Road, Town of Marlborough, Ulster County, NY
 PVE #20230293

				Date Sampled	6/16/2023 Location Sample ID		6/16/2023 SB-9 (0-1)		6/16/2023 SB-9 (1-2)		6/16/2023 SB-10 (0-1)		6/16/2023 SB-10 (1-2)		6/16/2023 SB-11 (0-1)		6/16/2023 SB-11 (1-2)		6/16/2023 SB-11 (2-3)		6/16/2023 SB-12 (0-1)		6/16/2023 SB-12 (1-2)							
Method	Analyte	CAS RN	UUSCOs	RRSCOs	Unit	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q	Result	Unit	Q				
SW6010	Arsenic	7440-38-2	13	16	mg/kg	13.1	mg/kg		12.3	mg/kg	21.2	mg/kg	13.9	mg/kg	36.6	mg/kg	17.7	mg/kg	15.7	mg/kg	20.9	mg/kg	13.6	mg/kg						
SW6010	Lead	7439-92-1	63	400	mg/kg	28.0	mg/kg		26.4	mg/kg	47.5	mg/kg	30.0	mg/kg	82.6	mg/kg	31.4	mg/kg	NS		48.4	mg/kg	31.1	mg/kg						
SW7473	Mercury	7439-97-6	0.18	0.81	mg/kg	0.0472	mg/kg		ND< 0.0325	mg/kg	U	0.0707	mg/kg	0.0353	mg/kg	0.0366	mg/kg	ND< 0.0324	mg/kg	U	NS			0.0525	mg/kg	ND< 0.0338	mg/kg	U		
SW8081	Aldrin	309-00-2	5	97	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U				
SW8081	Alpha Bhc (Alpha Hexachlorocyclohexane)	319-84-6	20	480	ug/kg	ND< 1.64	ug/kg	U	3.13	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	Alpha Endosulfan	959-98-8	2400	24000	ug/kg	ND< 1.64	ug/kg	U	26.2	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	Beta Bhc (Beta Hexachlorocyclohexane)	319-85-7	36	360	ug/kg	ND< 1.64	ug/kg	U	1.82	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	Beta Endosulfan	33213-65-9	2400	24000	ug/kg	ND< 1.64	ug/kg	U	3.36	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	cis-Chlordane	5103-71-9	94	4200	ug/kg	ND< 1.64	ug/kg	U	1.70	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	Delta BHC (Delta Hexachlorocyclohexane)	319-86-8	40	100000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U				
SW8081	Dieldrin	60-57-1	5	200	ug/kg	ND< 1.64	ug/kg	U	4.60	ug/kg	P	19.0	ug/kg	5.49	ug/kg	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U			
SW8081	Endosulfan Sulfate	1031-07-8	2400	24000	ug/kg	ND< 1.64	ug/kg	U	3.44	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	Endrin	72-20-8	14	11000	ug/kg	ND< 1.64	ug/kg	U	3.93	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U		
SW8081	Gamma Bhc (Lindane)	58-89-9	100	1300	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U				
SW8081	Heptachlor	76-44-8	42	2100	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U				
SW8081	P,P'-DDD	72-54-8	3.3	13000	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	2.04	ug/kg	ND< 1.64	ug/kg	U	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	3.60	ug/kg	ND< 1.64	ug/kg	
SW8081	P,P'-DDE	72-55-9	3.3	8900	ug/kg	13.1	ug/kg		15.1	ug/kg	17.9	ug/kg	7.11	ug/kg	12.6	ug/kg	3.59	ug/kg	NS		74.0	ug/kg	7.09	ug/kg						
SW8081	P,P'-DDT	50-29-3	3.3	7900	ug/kg	2.53	ug/kg		2.93	ug/kg	7.74	ug/kg	2.17	ug/kg	ND< 1.64	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.63	ug/kg	U	ND< 1.64	ug/kg	U	12.8	ug/kg	ND< 1.64	ug/kg
SW8151	Silvex (2,4,5-TP)	93-72-1	3800	100000	ug/kg	ND< 21.4	ug/kg	U	ND< 21.3	ug/kg	U	ND< 22	ug/kg	U	ND< 21.8	ug/kg	U	ND< 21	ug/kg	U	ND< 21.6	ug/kg	U	ND< 22.1	ug/kg	U	ND< 22.7	ug/kg	U	

Notes:

Standards are for respective Soil Cleanup Objectives per NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Restricted Residential Use Soil Cleanup Objectives (RRSCOs);

Yellow shading designates those compounds detected at concentrations exceeding UUSCOs;

Red shading designates those compounds detected at concentrations exceeding RRSCOs;

NS = Not sampled for; &

ND & U= Not detected at MDL for sample.

Table 2 - Metals, Pesticides and Herbicides in Drinking Water
 Compared to NYSDOH Subpart 5 MCLs
 626 Lattintown Road, Town of Marlborough, Ulster County, NY
 PVE #20230293

Method	Analyte	Date Sampled		6/16/2023		
		Location	Sample ID	SW-1		
				SW-1 20230616		
Method	Analyte	MCL	Unit	Result	Unit	Q
200.8	Arsenic	10	ug/L	ND<1.4	ug/L	U
245.1	Mercury	2	ug/L	ND<0.2	ug/L	U
504.1	1,2-Dibromoethane	0.05	ug/L	ND<0.01	ug/L	U
504.1	1,2-Dibromo-3-chloropropane	0.2	ug/L	ND<0.02	ug/L	U
515.3	2,4-D	50	ug/L	ND<0.1	ug/L	U
515.3	Dalapon	50	ug/L	ND<1.0	ug/L	U
515.3	Dicamba	50	ug/L	ND<0.5	ug/L	U
515.3	Dinoseb	50	ug/L	ND<0.2	ug/L	U
515.3	Pentachlorophenol	50	ug/L	ND<0.04	ug/L	U
515.3	Picloram	50	ug/L	ND<0.1	ug/L	U
515.3	2,4,5-TP (Silvex)	50	ug/L	ND<0.2	ug/L	U
531.2	Oxamyl	50	ug/L	ND<2.0	ug/L	U
531.2	Methomyl	50	ug/L	ND<0.5	ug/L	U
531.2	Carbofuran	50	ug/L	ND<0.9	ug/L	U
531.2	Carbaryl	50	ug/L	ND<0.5	ug/L	U
531.2	Aldicarb Sulfoxide	50	ug/L	ND<0.5	ug/L	U
531.2	Aldicarb Sulfone	50	ug/L	ND<0.8	ug/L	U
531.2	Aldicarb	50	ug/L	ND<0.5	ug/L	U
531.2	3-Hydroxycarbofuran	50	ug/L	ND<0.5	ug/L	U
531.2	Diquat	50	ug/L	ND<0.4	ug/L	U
547	Glyphosate	50	ug/L	ND<5.0	ug/L	U
525.3	Alachlor	50	ug/L	ND<0.05	ug/L	U
525.3	Atrazine	50	ug/L	ND<0.05	ug/L	U
525.3	Butachlor	50	ug/L	ND<0.05	ug/L	U
525.3	Metolachlor	50	ug/L	ND<0.05	ug/L	U
525.3	Metribuzin	50	ug/L	ND<0.05	ug/L	U
525.3	Simazine	50	ug/L	ND<0.05	ug/L	U
525.3	Aldrin	50	ug/L	ND<0.1	ug/L	U
525.3	Chlordane	50	ug/L	ND<0.19	ug/L	U
525.3	Dieldrin	50	ug/L	ND<0.03	ug/L	U
525.3	Endrin	50	ug/L	ND<0.01	ug/L	U
525.3	Heptachlor	50	ug/L	ND<0.04	ug/L	U
525.3	Heptachlor epoxide	50	ug/L	ND<0.02	ug/L	U
525.3	Hexachlorobenzene	50	ug/L	ND<0.05	ug/L	U
525.3	Hexachlorocyclopentadiene	50	ug/L	ND<0.05	ug/L	U
525.3	Lindane	50	ug/L	ND<0.02	ug/L	U
525.3	Methoxychlor	50	ug/L	ND<0.05	ug/L	U
525.3	Propachlor	50	ug/L	ND<0.05	ug/L	U
525.3	Toxaphene	50	ug/L	ND<0.95	ug/L	U

Notes:

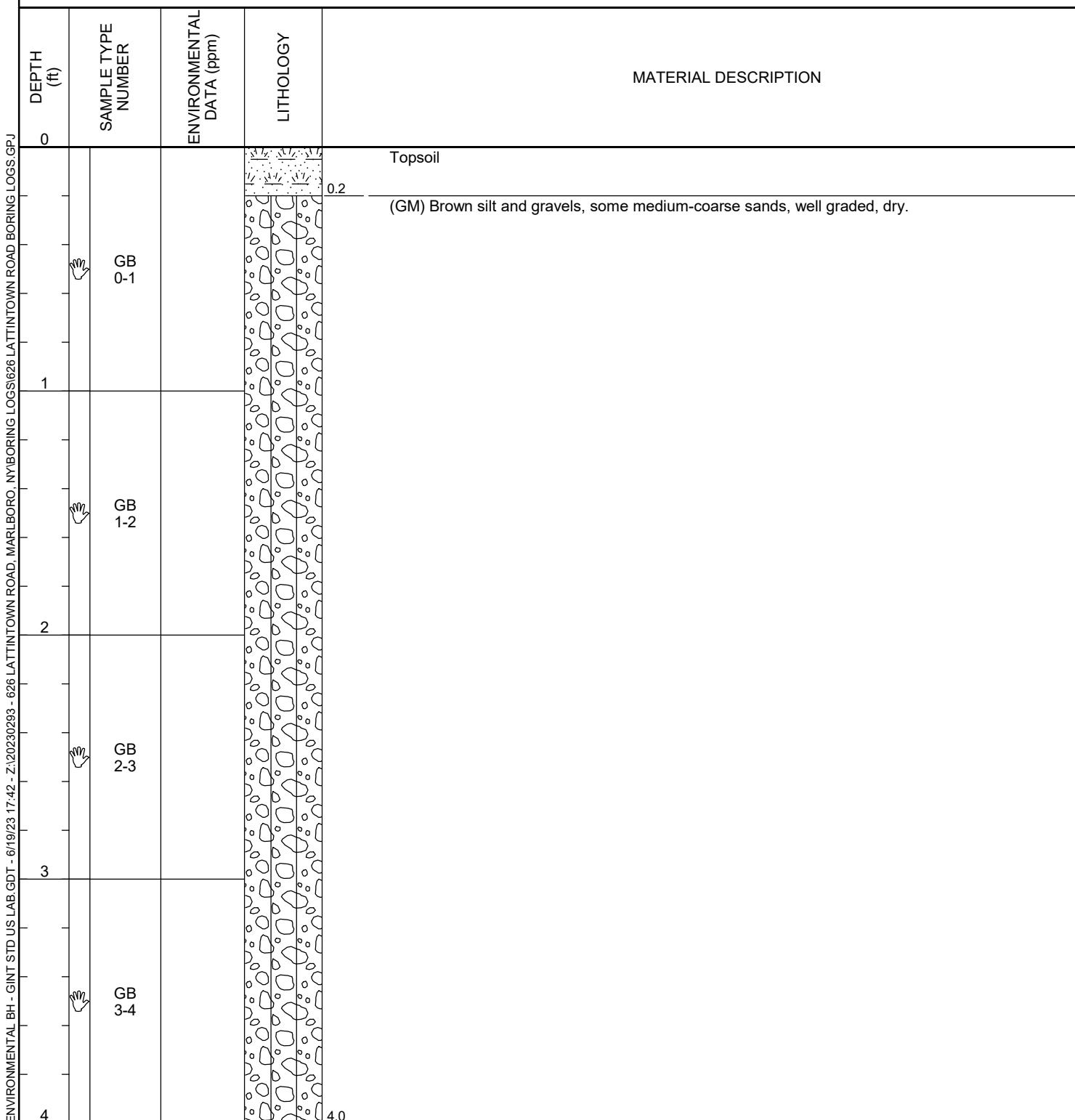
Standards are for Maximum Contaminant Levels (MCLs) as defined in NYSDOH Part 5

Yellow shading designates those compounds detected at concentrations exceeding MCLs;

NE = No MCL established; &

ND & U = Not detected at MDL for sample.

SOIL BORING LOGS


PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

BORING NUMBER SB-1

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

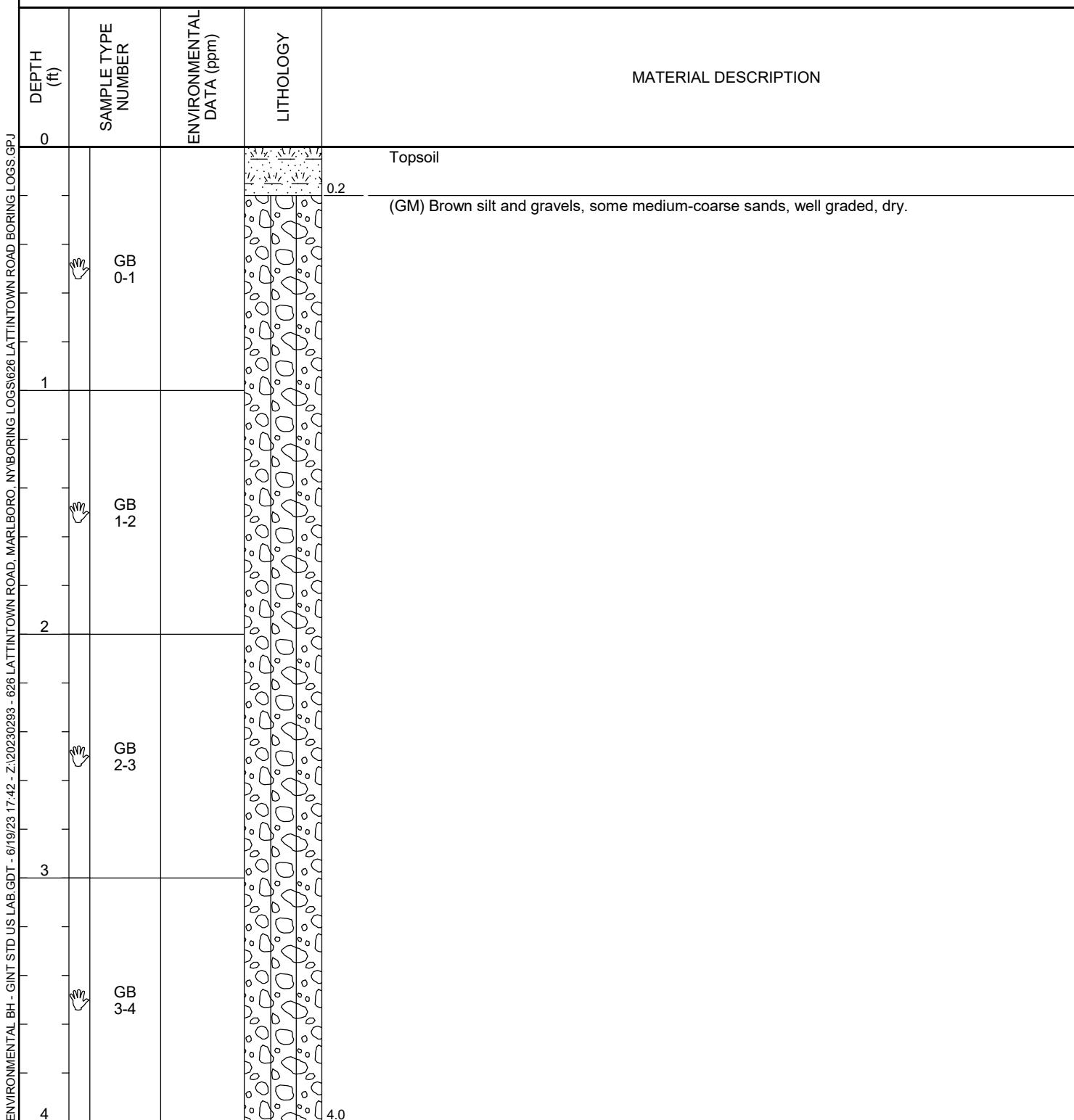
BORING NUMBER SB-2

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

Bottom of borehole at 4.0 feet.

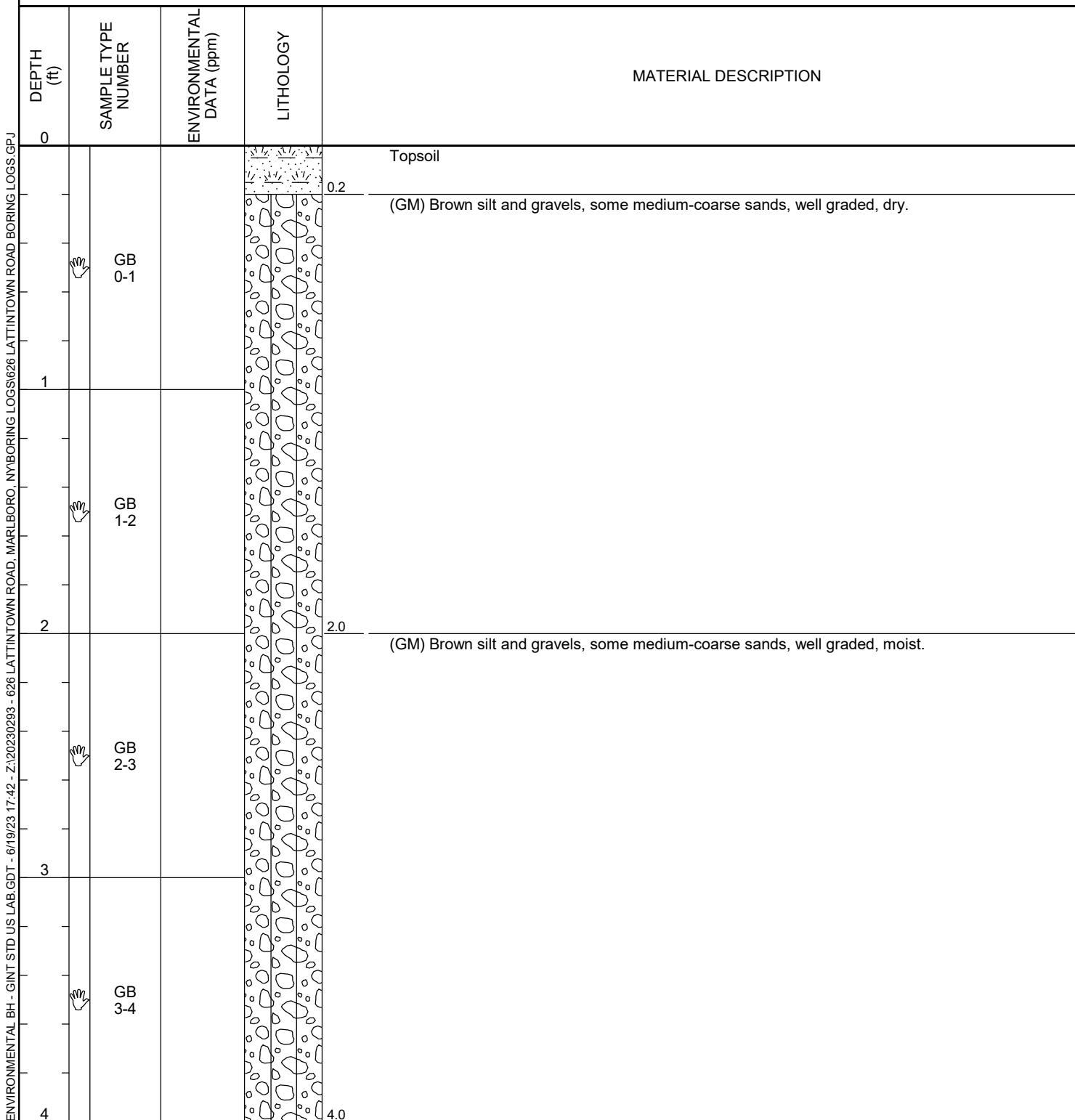

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

BORING NUMBER SB-3

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---


PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

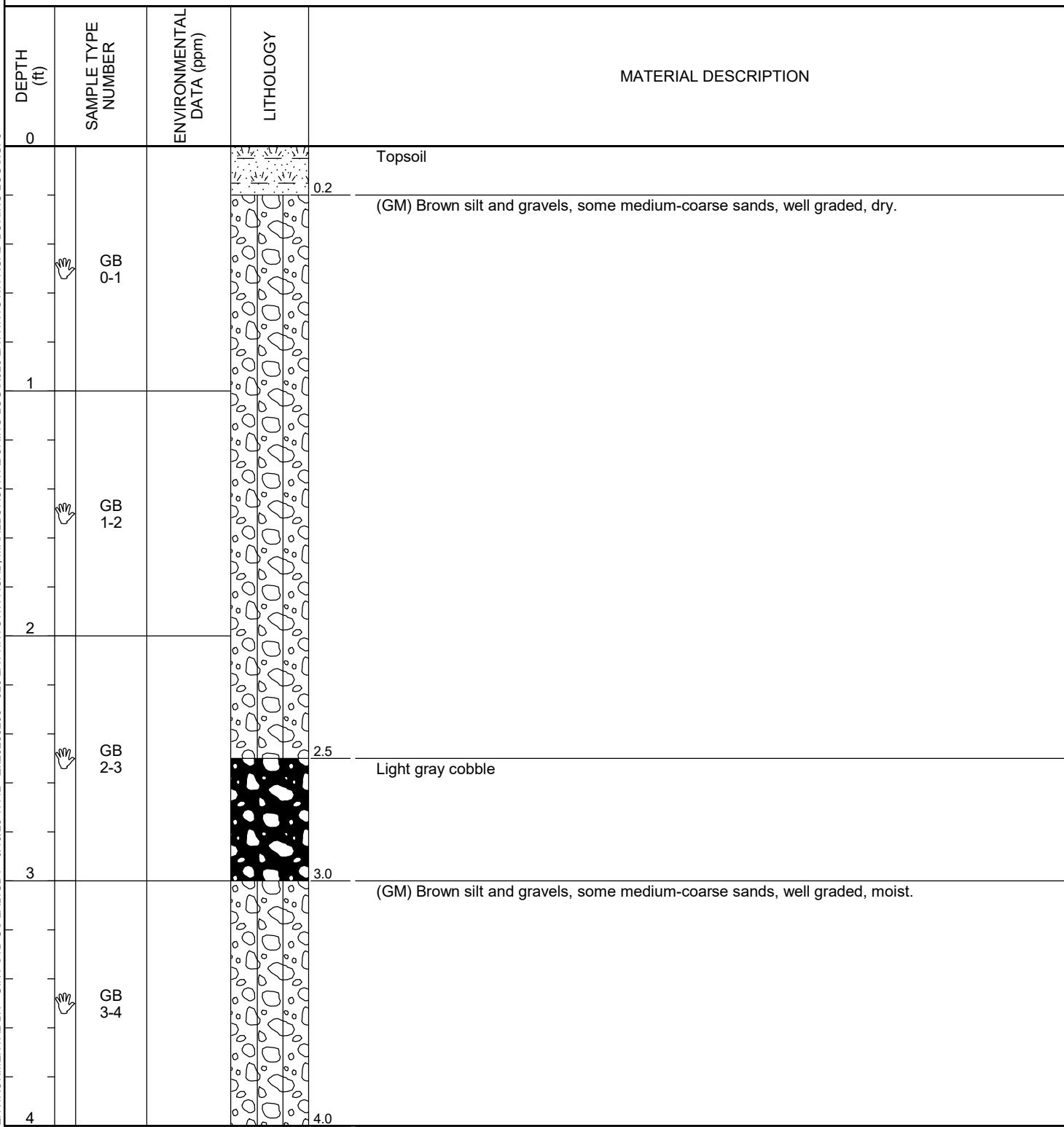
BORING NUMBER SB-4

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544


BORING NUMBER SB-5

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

ENVIRONMENTAL BH - GINT STD US LAB.GDT - 6/19/23 17:42 - Z:20230293 - 626 LATTINTOWN ROAD, MARLBORO, NY BORING LOGS\626 LATTINTOWN ROAD BORING LOGS.GPJ

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

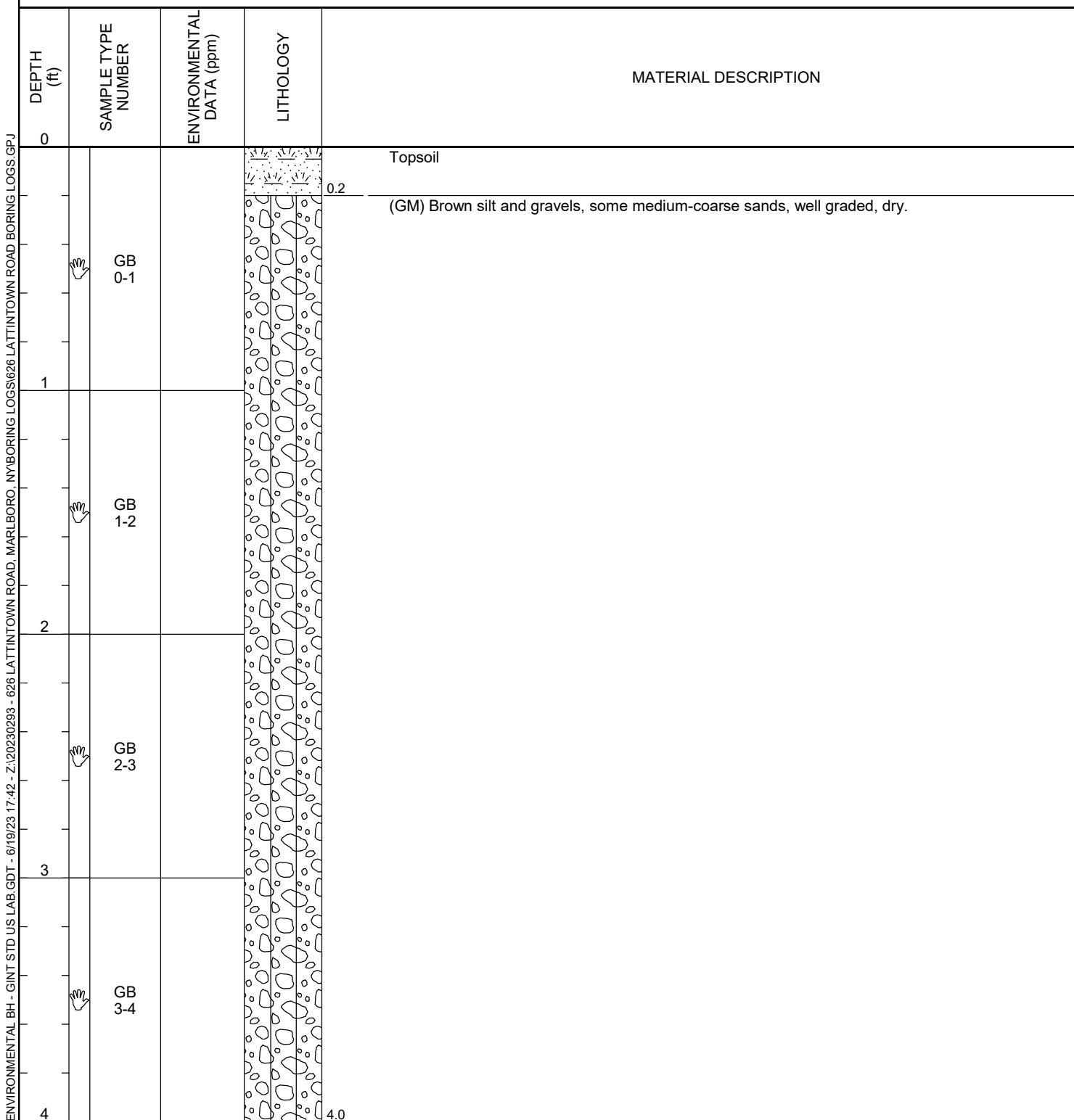
BORING NUMBER SB-6

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

Bottom of borehole at 4.0 feet.


PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

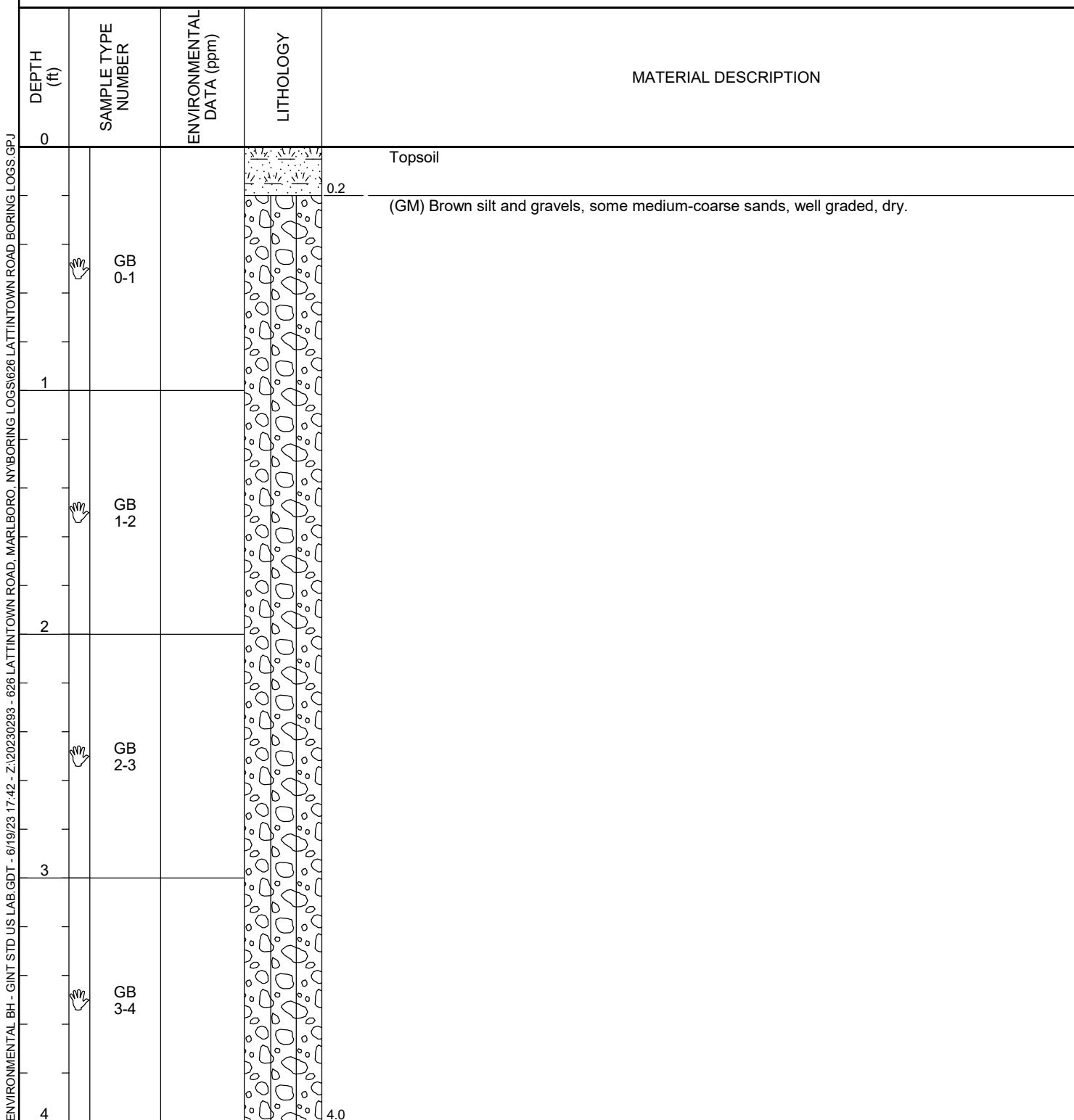
BORING NUMBER SB-7

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

Bottom of borehole at 4.0 feet.

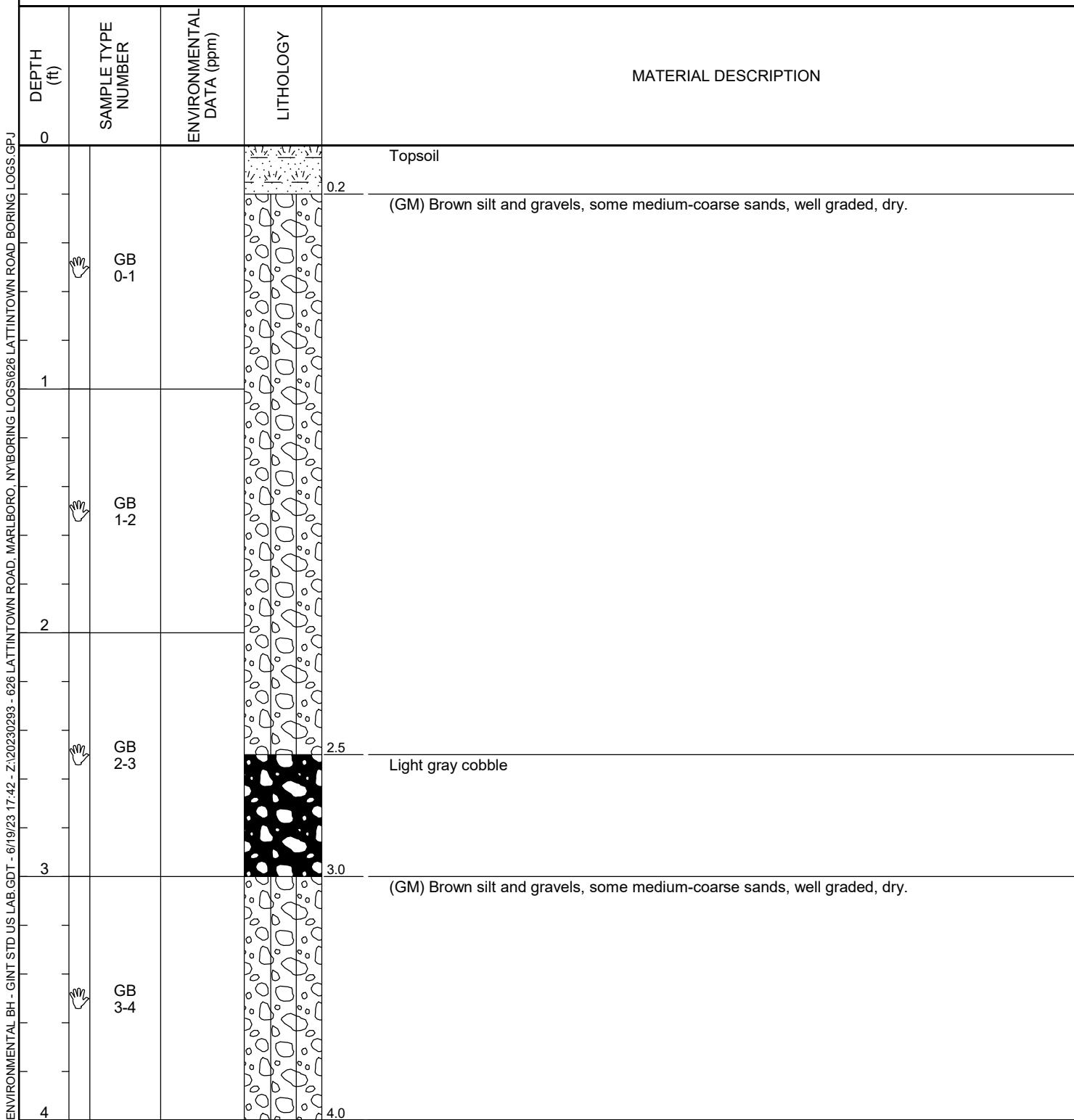

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

BORING NUMBER SB-8

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---


PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

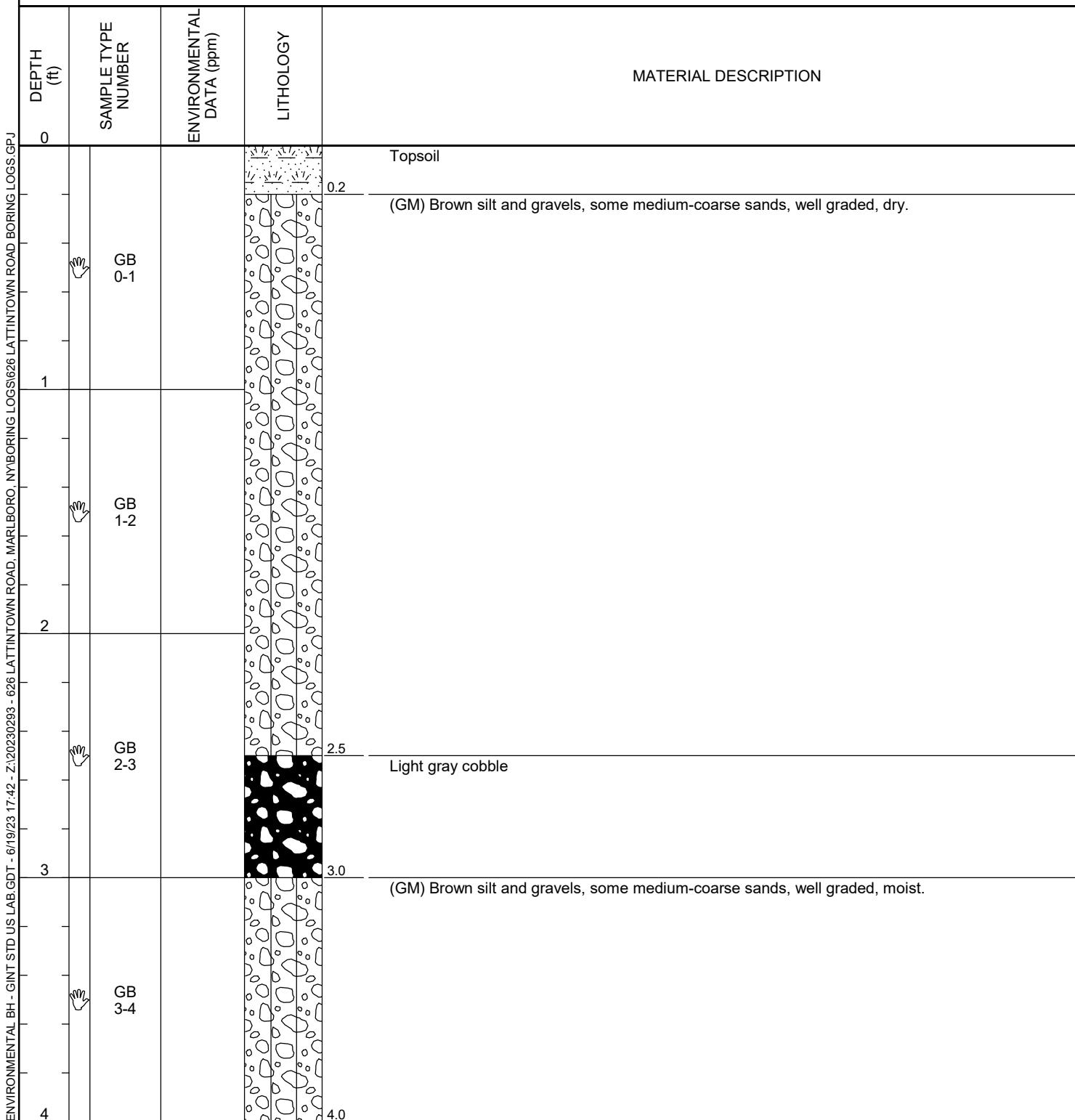
BORING NUMBER SB-9

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

Bottom of borehole at 4.0 feet.

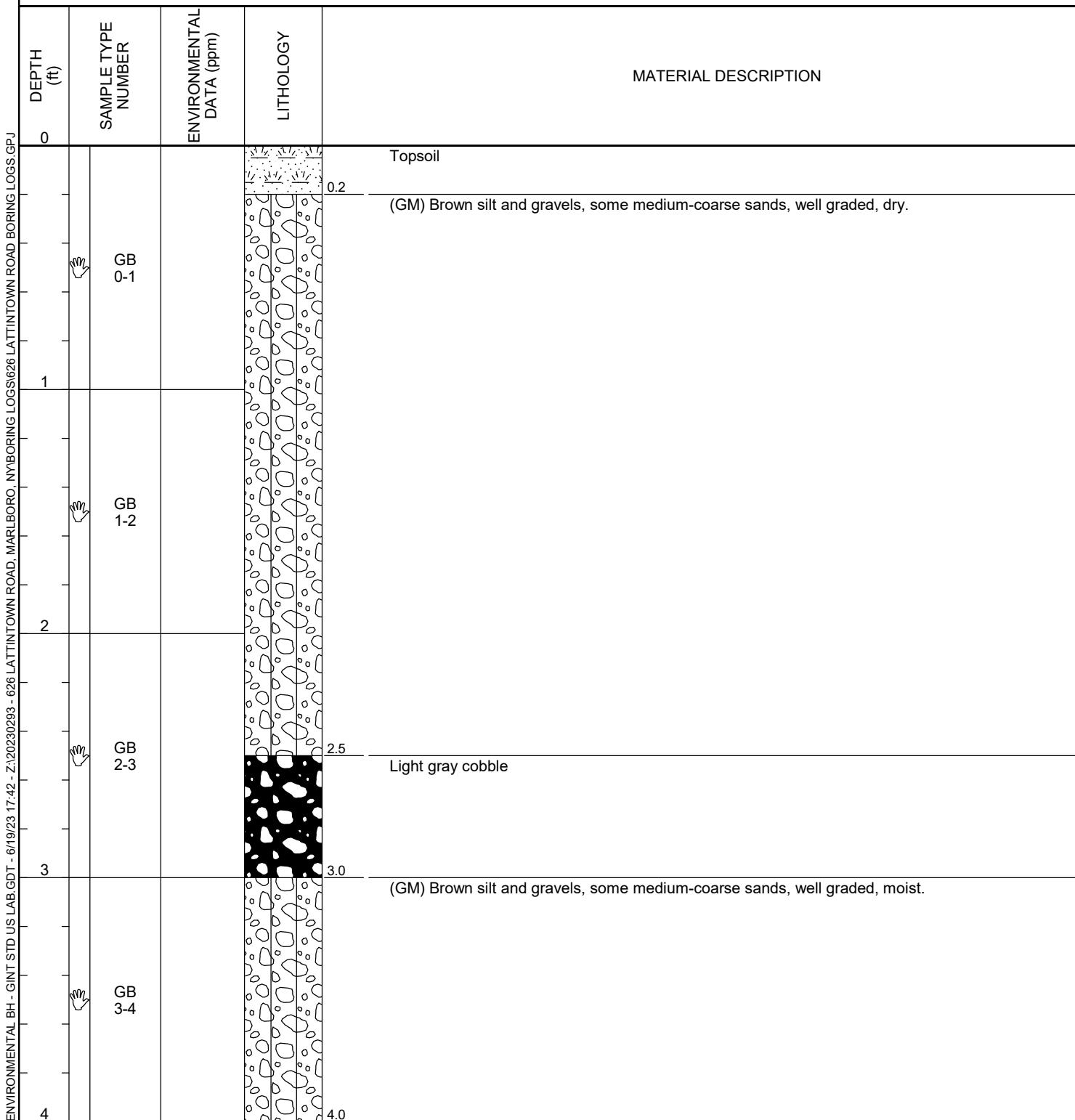

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

BORING NUMBER SB-10

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---


PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544

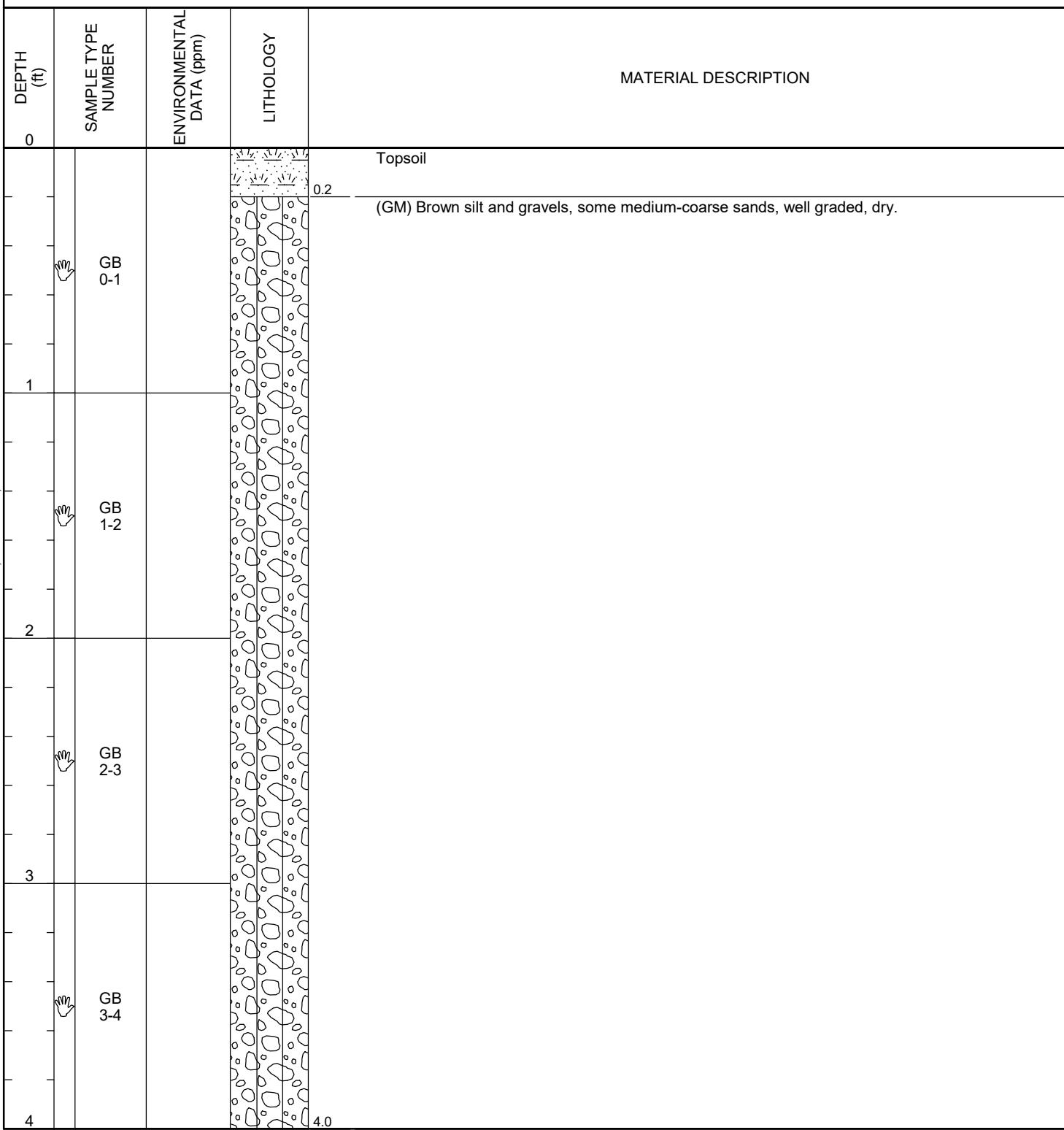
BORING NUMBER SB-11

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

PVE Engineering
48 Springside Avenue
Poughkeepsie, NY 12603
Telephone: (845) 454-2544


BORING NUMBER SB-12

PAGE 1 OF 1

CLIENT Marlborough Resort, LLC
PROJECT NUMBER 20230293
DATE STARTED 6/16/23 COMPLETED 6/16/23
DRILLING CONTRACTOR PVE Engineering
DRILLING METHOD Direct Push via GeoProbe 54DT
LOGGED BY Fredric LeClair CHECKED BY CBT
NOTES Weather: 75°F, partly cloudy

PROJECT NAME 626 Lattintown Road
PROJECT LOCATION 626 Lattintown Rd., Marlboro, NY
GROUND ELEVATION --- HOLE SIZE 2.25 inches
GROUND WATER LEVELS:
AT TIME OF DRILLING ---
AT END OF DRILLING ---
AFTER DRILLING ---

ENVIRONMENTAL BH - GINT STD US LAB.GDT - 6/19/23 17:42 - Z:20230293 - 626 LATTINTOWN ROAD, MARLBORO, NY BORING LOGS\626 LATTINTOWN ROAD BORING LOGS.GPJ

Bottom of borehole at 4.0 feet.

ANALYTICAL REPORTS

Technical Report

prepared for:

PVE, LLC.
48 Springside Avenue
Poughkeepsie NY, 12603
Attention: Conor Tarbell

Report Date: 07/06/2023
Client Project ID: 20230293
York Project (SDG) No.: 23F1134

Revision No. 1.0

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615
(203) 325-1371

132-02 89th AVENUE
FAX (203) 357-0166

RICHMOND HILL, NY 11418
ClientServices@yorklab.com

Report Date: 07/06/2023
Client Project ID: 20230293
York Project (SDG) No.: 23F1134

PVE, LLC.
48 Springside Avenue
Poughkeepsie NY, 12603
Attention: Conor Tarbell

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 16, 2023 and listed below. The project was identified as your project: **20230293**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

<u>York Sample ID</u>	<u>Client Sample ID</u>	<u>Matrix</u>	<u>Date Collected</u>	<u>Date Received</u>
23F1134-01	SB-1 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-02	SB-1 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-03	SB-1 2-3 20230616	Soil	06/16/2023	06/16/2023
23F1134-05	SB-2 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-06	SB-2 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-09	SB-3 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-10	SB-3 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-11	SB-3 2-3 20230616	Soil	06/16/2023	06/16/2023
23F1134-13	SB-4 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-14	SB-4 2-3 20230616	Soil	06/16/2023	06/16/2023
23F1134-15	SB-4 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-17	SB-5 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-18	SB-5 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-19	SB-5 2-3 20230616	Soil	06/16/2023	06/16/2023
23F1134-21	SB-6 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-22	SB-6 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-25	SB-7 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-26	SB-7 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-27	SB-7 2-3 20230616	Soil	06/16/2023	06/16/2023
23F1134-29	SB-8 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-30	SB-8 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-33	SB-9 0-1 20230616	Soil	06/16/2023	06/16/2023

<u>York Sample ID</u>	<u>Client Sample ID</u>	<u>Matrix</u>	<u>Date Collected</u>	<u>Date Received</u>
23F1134-34	SB-9 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-37	SB-10 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-38	SB-10 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-41	SB-11 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-42	SB-11 1-2 20230616	Soil	06/16/2023	06/16/2023
23F1134-43	SB-11 2-3 20230616	Soil	06/16/2023	06/16/2023
23F1134-45	SB-12 0-1 20230616	Soil	06/16/2023	06/16/2023
23F1134-46	SB-12 1-2 20230616	Soil	06/16/2023	06/16/2023

General Notes for York Project (SDG) No.: 23F1134

1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 07/06/2023

Cassie L. Mosher
Laboratory Manager

Sample Information

Client Sample ID: **SB-1 0-1 20230616**

York Sample ID: **23F1134-01**

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
72-55-9	4,4'-DDE	12.4		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/23/2023 10:14	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:14	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3	Surrogate: Decachlorobiphenyl	74.2 %
877-09-8	Surrogate: Tetrachloro-m-xylene	62.2 %

Herbicides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-1 0-1 20230616

York Sample ID: 23F1134-01

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	20.9	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/21/2023 23:16	BCJ
Surrogate Recoveries										
19719-28-9 Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)										

Arsenic by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	26.3		mg/kg dry	1.10	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:30	CEG

Lead by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	55.2		mg/kg dry	0.367	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:30	CEG

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.158		mg/kg dry	0.0317	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	94.7		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:04	06/23/2023 13:02	VR

Sample Information

Client Sample ID: SB-1 1-2 20230616

York Sample ID: 23F1134-02

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Sample Information

Client Sample ID: SB-1 1-2 20230616

York Sample ID: 23F1134-02

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
72-55-9	4,4'-DDE	3.27		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/23/2023 10:32	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:32	BCJ

Surrogate Recoveries

	<u>Result</u>	<u>Acceptance Range</u>
2051-24-3	Surrogate: Decachlorobiphenyl	63.7 %
877-09-8	Surrogate: Tetrachloro-m-xylene	52.2 %

Herbicides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-1 1-2 20230616

York Sample ID: 23F1134-02

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.4	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/21/2023 23:26	BCJ
Surrogate Recoveries										
19719-28-9 Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)										
50.4 % 21-150										

Arsenic by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	16.2		mg/kg dry	1.12	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:32	CEG

Lead by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	25.6		mg/kg dry	0.373	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:32	CEG

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0322	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	93.3		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:04	06/23/2023 13:02	VR

Sample Information

Client Sample ID: SB-1 2-3 20230616

York Sample ID: 23F1134-03

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Sample Information

Client Sample ID: SB-1 2-3 20230616

York Sample ID: 23F1134-03

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:34 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	14.3		mg/kg dry	1.09	1	EPA 6010D	07/03/2023 08:08	07/06/2023 15:51	CEG

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	95.2		%	0.100	1	SM 2540G	06/29/2023 13:38	06/30/2023 07:39	VR

Certifications: CTDOH-PH-0723

Sample Information

Client Sample ID: SB-2 0-1 20230616

York Sample ID: 23F1134-05

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:46 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD [2C]	2.55	P	ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
72-55-9	4,4'-DDE	69.8		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
50-29-3	4,4'-DDT	12.1		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	NELAC-NY10854,NJDEP		
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
319-86-8	delta-BHC	ND	P	ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/23/2023 10:50	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		

Sample Information

Client Sample ID: SB-2 0-1 20230616

York Sample ID: 23F1134-05

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:46 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:50	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:50	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/23/2023 10:50	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:50	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:50	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:50	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 10:50	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>		57.1 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>		44.3 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.3	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/21/2023 23:37	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>		50.8 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	31.2		mg/kg dry	1.12	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:41	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615				■		132-02 89th AVENUE		RICHMOND HILL, NY 11418	

Sample Information

Client Sample ID: SB-2 0-1 20230616

York Sample ID: 23F1134-05

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:46 am

Date Received
06/16/2023

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	78.4		mg/kg dry	0.373	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:41	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.314		mg/kg dry	0.0322	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	93.3		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:04	06/23/2023 13:02	VR

Sample Information

Client Sample ID: SB-2 1-2 20230616

York Sample ID: 23F1134-06

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:46 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
72-55-9	4,4'-DDE	6.19		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ

Sample Information

Client Sample ID: SB-2 1-2 20230616

York Sample ID: 23F1134-06

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:46 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/23/2023 11:08	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:08	BCJ
Surrogate Recoveries		Result	Acceptance Range							
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>	73.2 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>	54.8 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.4	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/21/2023 23:48	BCJ
Surrogate Recoveries		Result	Acceptance Range							
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>	70.4 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615				■		132-02 89th AVENUE			RICHMOND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371						FAX (203) 357-0166			ClientServices@

Sample Information

Client Sample ID: SB-2 1-2 20230616

York Sample ID: 23F1134-06

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 7:46 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	11.8		mg/kg dry	1.13	1	EPA 6010D	06/21/2023 14:23	06/26/2023 17:43	CEG

Log-in Notes:

Sample Notes:

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	19.6		mg/kg dry	0.377	1	EPA 6010D	06/21/2023 14:23	06/26/2023 17:43	CEG

Log-in Notes:

Sample Notes:

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0473		mg/kg dry	0.0326	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Log-in Notes:

Sample Notes:

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.1		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-3 0-1 20230616

York Sample ID: 23F1134-09

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	2.91		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/23/2023 11:26	BCJ
72-55-9	4,4'-DDE	66.0		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/23/2023 11:26	BCJ

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-3 0-1 20230616

York Sample ID: 23F1134-09

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-29-3	4,4'-DDT	9.52		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/23/2023 11:26	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:26	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3	Surrogate: Decachlorobiphenyl	53.0 %
877-09-8	Surrogate: Tetrachloro-m-xylene	30-150

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.4	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/21/2023 23:59	BCJ
19719-28-9	Surrogate Recoveries	Result		Acceptance Range						
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	45.0 %		21-150						

Sample Information

Client Sample ID: SB-3 0-1 20230616

York Sample ID: 23F1134-09

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	26.0		mg/kg dry	1.13	1	EPA 6010D	06/21/2023 14:23	06/26/2023 17:46	CEG

Log-in Notes:

Sample Notes:

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	67.9		mg/kg dry	0.377	1	EPA 6010D	06/21/2023 14:23	06/26/2023 17:46	CEG

Log-in Notes:

Sample Notes:

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.118		mg/kg dry	0.0325	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Log-in Notes:

Sample Notes:

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.3		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-3 1-2 20230616

York Sample ID: 23F1134-10

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.61	5	EPA 8081B	06/20/2023 16:45	06/23/2023 11:44	BCJ
72-55-9	4,4'-DDE	12.0		ug/kg dry	1.61	5	EPA 8081B	06/20/2023 16:45	06/23/2023 11:44	BCJ

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-3 1-2 20230616

York Sample ID: 23F1134-10

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-29-3	4,4'-DDT	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/23/2023 11:44	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/23/2023 11:44	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3	Surrogate: Decachlorobiphenyl	74.5 %
877-09-8	Surrogate: Tetrachloro-m-xylene	59.9 %

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.2	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 00:09	BCJ

Surrogate Recoveries

	Result	Acceptance Range

Sample Information

Client Sample ID: SB-3 1-2 20230616

York Sample ID: 23F1134-10

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	66.4 %			21-150					

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	17.3		mg/kg dry	1.14	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:48	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	33.6		mg/kg dry	0.379	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:48	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0742		mg/kg dry	0.0327	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	91.7		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-3 2-3 20230616

York Sample ID: 23F1134-11

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Arsenic by EPA 6010

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-3 2-3 20230616

York Sample ID: 23F1134-11

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:05 am

Date Received
06/16/2023

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	15.2		mg/kg dry	1.09	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	07/03/2023 08:08	07/06/2023 15:54	CEG

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	95.2		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/29/2023 13:38	06/30/2023 07:39	VR

Sample Information

Client Sample ID: SB-4 1-2 20230616

York Sample ID: 23F1134-13

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
72-55-9	4,4'-DDE	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ

Sample Information

Client Sample ID: SB-4 1-2 20230616

York Sample ID: 23F1134-13

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 11:06	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:06	BCJ
Surrogate Recoveries		Result	Acceptance Range							
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>	75.9 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>	61.9 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	22.4	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 01:14	BCJ
Surrogate Recoveries		Result	Acceptance Range							
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>	62.8 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	21.9		mg/kg dry	1.17	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:51	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	43.3		mg/kg dry	0.391	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:51	CEG

Sample Information

Client Sample ID: SB-4 1-2 20230616

York Sample ID: 23F1134-13

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0551		mg/kg dry	0.0338	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	88.9		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-4 2-3 20230616

York Sample ID: 23F1134-14

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	20.6		mg/kg dry	1.19	1	EPA 6010D	07/03/2023 08:08	07/06/2023 15:56	CEG

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	87.7		%	0.100	1	SM 2540G	06/29/2023 13:38	06/30/2023 07:39	VR

Sample Information

Client Sample ID: SB-4 0-1 20230616

York Sample ID: 23F1134-15

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Sample Information

Client Sample ID: SB-4 0-1 20230616

York Sample ID: 23F1134-15

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
72-54-8	4,4'-DDD	ND	P	ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
72-55-9	4,4'-DDE	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
50-29-3	4,4'-DDT	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
309-00-2	Aldrin	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
319-84-6	alpha-BHC	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
319-85-7	beta-BHC	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
319-86-8	delta-BHC	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
60-57-1	Dieldrin	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 11:24	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.60	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:24	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	Surrogate: Decachlorobiphenyl		76.0 %	30-150							
877-09-8	Surrogate: Tetrachloro-m-xylene		61.3 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-4 0-1 20230616

York Sample ID: 23F1134-15

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 8:32 am

Date Received
06/16/2023

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.2	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 01:25	BCJ
Surrogate Recoveries										
19719-28-9 Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)										
		Result		Acceptance Range						
		71.6 %		21-150						

Arsenic by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	21.5		mg/kg dry	1.11	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:53	CEG

Lead by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	38.0		mg/kg dry	0.371	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:53	CEG

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0497		mg/kg dry	0.0320	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	93.7		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-5 0-1 20230616

York Sample ID: 23F1134-17

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Sample Information

Client Sample ID: SB-5 0-1 20230616

York Sample ID: 23F1134-17

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND	P	ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
72-55-9	4,4'-DDE	7.67		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 11:42	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 11:42	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3	Surrogate: Decachlorobiphenyl	76.8 %
877-09-8	Surrogate: Tetrachloro-m-xylene	62.2 %

Herbicides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-5 0-1 20230616

York Sample ID: 23F1134-17

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	22.3	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 01:36	BCJ
Surrogate Recoveries										
19719-28-9 Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)										
		Result		Acceptance Range						
		43.6 %		21-150						

Arsenic by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	15.3		mg/kg dry	1.17	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:55	CEG

Lead by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	35.1		mg/kg dry	0.390	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:55	CEG

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0666		mg/kg dry	0.0336	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	89.2		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-5 1-2 20230616

York Sample ID: 23F1134-18

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Sample Information

Client Sample ID: SB-5 1-2 20230616

York Sample ID: 23F1134-18

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
72-55-9	4,4'-DDE	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 12:00	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:00	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>		94.7 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>		73.2 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-5 1-2 20230616

York Sample ID: 23F1134-18

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.3	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 01:47	BCJ
Surrogate Recoveries										
19719-28-9 Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)										
		Result		Acceptance Range						
		46.8 %		21-150						

Arsenic by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	17.5		mg/kg dry	1.13	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:58	CEG

Lead by EPA 6010

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	23.7		mg/kg dry	0.377	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 17:58	CEG

Mercury by 7473

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0326	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Log-in Notes:

Sample Notes:

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.1		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-5 2-3 20230616

York Sample ID: 23F1134-19

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Sample Information

Client Sample ID: SB-5 2-3 20230616

York Sample ID: 23F1134-19

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 9:35 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	14.6		mg/kg dry	1.17	1	EPA 6010D	07/03/2023 08:08	07/06/2023 15:59	CEG

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	89.3		%	0.100	1	SM 2540G	06/29/2023 13:38	06/30/2023 07:39	VR

Certifications: CTDOH-PH-0723

Sample Information

Client Sample ID: SB-6 0-1 20230616

York Sample ID: 23F1134-21

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:02 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
72-55-9	4,4'-DDE	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
50-29-3	4,4'-DDT	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
309-00-2	Aldrin	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
319-84-6	alpha-BHC	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		NELAC-NY10854,NJDEP			
319-85-7	beta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
319-86-8	delta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:18	BCJ
					Certifications:		CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			

Sample Information

Client Sample ID: SB-6 0-1 20230616

York Sample ID: 23F1134-21

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:02 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
60-57-1	Dieldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:18	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:18	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 12:18	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:18	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:18	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:18	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:18	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>		98.2 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>		75.2 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	22.4	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 01:58	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>		56.0 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	13.5		mg/kg dry	1.18	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 18:00	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615				■		132-02 89th AVENUE		RICHMOND HILL, NY 11418	

Sample Information

Client Sample ID: SB-6 0-1 20230616

York Sample ID: 23F1134-21

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:02 am

Date Received
06/16/2023

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	29.7		mg/kg dry	0.395	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 18:00	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0526		mg/kg dry	0.0341	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	88.0		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-6 1-2 20230616

York Sample ID: 23F1134-22

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:02 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
72-55-9	4,4'-DDE	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ

Sample Information

Client Sample ID: SB-6 1-2 20230616

York Sample ID: 23F1134-22

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:02 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
319-86-8	delta-BHC	ND	P	ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 12:36	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:36	BCJ
Surrogate Recoveries		Result	Acceptance Range							
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>	75.6 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>	59.8 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.7	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 02:08	BCJ
Surrogate Recoveries		Result	Acceptance Range							
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>	71.6 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615				■		132-02 89th AVENUE			RICHMOND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371						FAX (203) 357-0166			ClientServices@

Sample Information

Client Sample ID: SB-6 1-2 20230616

York Sample ID: 23F1134-22

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:02 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	14.3		mg/kg dry	1.14	1	EPA 6010D	06/21/2023 14:23	06/26/2023 18:03	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	22.7		mg/kg dry	0.380	1	EPA 6010D	06/21/2023 14:23	06/26/2023 18:03	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0328	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	91.4		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-7 0-1 20230616

York Sample ID: 23F1134-25

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	12.8		ug/kg dry	1.62	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:54	BCJ
							Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			
72-55-9	4,4'-DDE	96.0		ug/kg dry	1.62	5	EPA 8081B	06/20/2023 16:45	06/24/2023 12:54	BCJ
							Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP			

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-7 0-1 20230616

York Sample ID: 23F1134-25

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-29-3	4,4'-DDT	79.2		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
319-86-8	delta-BHC	ND	P	ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
60-57-1	Dieldrin	33.2		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 12:54	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.62	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 12:54	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3	Surrogate: Decachlorobiphenyl	72.2 %
877-09-8	Surrogate: Tetrachloro-m-xylene	49.6 %

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.6	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:30	06/22/2023 02:19	BCJ
19719-28-9	Surrogate Recoveries	42.2 %		Acceptance Range	21-150					
	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)									

Sample Information

Client Sample ID: SB-7 0-1 20230616

York Sample ID: 23F1134-25

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	117		mg/kg dry	1.15	1	EPA 6010D	06/21/2023 14:23	06/26/2023 18:12	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	358		mg/kg dry	0.384	1	EPA 6010D	06/21/2023 14:23	06/26/2023 18:12	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0822		mg/kg dry	0.0331	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	90.5		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-7 1-2 20230616

York Sample ID: 23F1134-26

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/24/2023 13:12	BCJ
72-55-9	4,4'-DDE	27.8		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/24/2023 13:12	BCJ

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Sample Information

Client Sample ID: SB-7 1-2 20230616

York Sample ID: 23F1134-26

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-29-3	4,4'-DDT	4.56		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
60-57-1	Dieldrin	3.48		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 13:12	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 13:12	BCJ
Surrogate Recoveries		Result	Acceptance Range							
2051-24-3	Surrogate: Decachlorobiphenyl	77.9 %	30-150							
877-09-8	Surrogate: Tetrachloro-m-xylene	60.9 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.3	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 19:19	BCJ
Surrogate Recoveries		Result	Acceptance Range							
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	61.8 %	21-150							

Sample Information

Client Sample ID: SB-7 1-2 20230616

York Sample ID: 23F1134-26

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	21.9		mg/kg dry	1.12	1	EPA 6010D	06/21/2023 14:23	06/26/2023 18:14	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	43.5		mg/kg dry	0.374	1	EPA 6010D	06/21/2023 14:23	06/26/2023 18:14	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0342		mg/kg dry	0.0323	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.8		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-7 2-3 20230616

York Sample ID: 23F1134-27

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	12.5		mg/kg dry	1.12	1	EPA 6010D	07/03/2023 08:08	07/06/2023 16:01	CEG

Log-in Notes:

Sample Notes:

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Sample Information

Client Sample ID: SB-7 2-3 20230616

York Sample ID: 23F1134-27

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 10:33 am

Date Received
06/16/2023

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.6		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/29/2023 13:38	06/30/2023 07:39	VR

Sample Information

Client Sample ID: SB-8 0-1 20230616

York Sample ID: 23F1134-29

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:00 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	6.78		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
72-55-9	4,4'-DDE	56.7		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
50-29-3	4,4'-DDT	40.9		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
309-00-2	Aldrin	1.74		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
60-57-1	Dieldrin	60.4		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 04:49	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ

Sample Information

Client Sample ID: SB-8 0-1 20230616

York Sample ID: 23F1134-29

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:00 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-20-8	Endrin	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.61	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 04:49	BCJ
Surrogate Recoveries										
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>	62.5 %			30-150					
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>	46.1 %			30-150					

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.2	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 19:30	BCJ
Surrogate Recoveries										
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>	40.8 %			21-150					

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	54.0		mg/kg dry	1.12	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 18:17	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	207		mg/kg dry	0.374	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/21/2023 14:23	06/26/2023 18:17	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.170		mg/kg dry	0.0323	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Sample Information

Client Sample ID: SB-8 0-1 20230616

York Sample ID: 23F1134-29

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:00 am

Date Received
06/16/2023

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	93.0		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-8 1-2 20230616

York Sample ID: 23F1134-30

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:00 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
72-55-9	4,4'-DDE	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
60-57-1	Dieldrin	5.09		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 05:07	BCJ

Sample Information

Client Sample ID: SB-8 1-2 20230616

York Sample ID: 23F1134-30

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:00 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst		
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ		
72-20-8	Endrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ		
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ		
76-44-8	Heptachlor	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:07	BCJ		
Surrogate Recoveries		Result	Acceptance Range									
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>	83.5 %			30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>	63.5 %			30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst		
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.5	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 19:40	BCJ		
Surrogate Recoveries												
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>	67.2 %			21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	14.2		mg/kg dry	1.13	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:35	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	37.4		mg/kg dry	0.378	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:35	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615		■		132-02 89th AVENUE			RICHMOND HILL, NY 11418		

Sample Information

Client Sample ID: SB-8 1-2 20230616

York Sample ID: 23F1134-30

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:00 am

Date Received
06/16/2023

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0350		mg/kg dry	0.0326	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.0		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-9 0-1 20230616

York Sample ID: 23F1134-33

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:40 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
72-55-9	4,4'-DDE	13.1		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
50-29-3	4,4'-DDT	2.53		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ

Sample Information

Client Sample ID: SB-9 0-1 20230616

York Sample ID: 23F1134-33

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:40 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 05:25	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:25	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>		62.1 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>		47.5 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.4	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 20:45	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>		60.4 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	13.1		mg/kg dry	1.13	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:44	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615				■		132-02 89th AVENUE		RICHMOND HILL, NY 11418	

Sample Information

Client Sample ID: SB-9 0-1 20230616

York Sample ID: 23F1134-33

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:40 am

Date Received
06/16/2023

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	28.0		mg/kg dry	0.377	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:44	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0472		mg/kg dry	0.0326	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.1		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-9 1-2 20230616

York Sample ID: 23F1134-34

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:40 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND	P	ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
72-55-9	4,4'-DDE [2C]	15.1		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
50-29-3	4,4'-DDT [2C]	2.93		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
319-84-6	alpha-BHC	3.13		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ

Sample Information

Client Sample ID: SB-9 1-2 20230616

York Sample ID: 23F1134-34

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:40 am

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5103-71-9	alpha-Chlordane	1.70		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
319-85-7	beta-BHC	1.82		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
319-86-8	delta-BHC	ND	P	ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
60-57-1	Dieldrin	4.60	P	ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
959-98-8	Endosulfan I	26.2		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
33213-65-9	Endosulfan II	3.36		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 05:43	BCJ
1031-07-8	Endosulfan sulfate	3.44		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
72-20-8	Endrin	3.93		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 05:43	BCJ
Surrogate Recoveries		Result	Acceptance Range							
2051-24-3	Surrogate: Decachlorobiphenyl	85.0 %	30-150							
877-09-8	Surrogate: Tetrachloro-m-xylene	49.4 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.3	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 20:56	BCJ
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	55.2 %			21-150					

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	12.3		mg/kg dry	1.13	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:46	CEG

Sample Information

Client Sample ID: SB-9 1-2 20230616

York Sample ID: 23F1134-34

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 11:40 am

Date Received
06/16/2023

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	26.4		mg/kg dry	0.377	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:46	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0325	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.3		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-10 0-1 20230616

York Sample ID: 23F1134-37

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:00 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	2.04		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
72-55-9	4,4'-DDE	17.9		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
50-29-3	4,4'-DDT	7.74		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
309-00-2	Aldrin	ND	P	ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ

Sample Information

Client Sample ID: SB-10 0-1 20230616

York Sample ID: 23F1134-37

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:00 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
60-57-1	Dieldrin	19.0		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 06:01	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:01	BCJ
Surrogate Recoveries		Result	Acceptance Range							
2051-24-3	Surrogate: Decachlorobiphenyl	65.1 %	30-150							
877-09-8	Surrogate: Tetrachloro-m-xylene	51.4 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	22.0	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 21:06	BCJ
Surrogate Recoveries		Result	Acceptance Range							
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	36.2 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615		■		132-02 89th AVENUE			RICHMOND HILL, NY 11418		
www.YORKLAB.com	(203) 325-1371				FAX (203) 357-0166			ClientServices@	Page 44 of 63	

Sample Information

Client Sample ID: SB-10 0-1 20230616

York Sample ID: 23F1134-37

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:00 pm

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	21.2		mg/kg dry	1.17	1	EPA 6010D	06/22/2023 12:03	06/25/2023 19:49	CEG

Log-in Notes:

Sample Notes:

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	47.5		mg/kg dry	0.389	1	EPA 6010D	06/22/2023 12:03	06/25/2023 19:49	CEG

Log-in Notes:

Sample Notes:

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0707		mg/kg dry	0.0336	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Log-in Notes:

Sample Notes:

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	89.3		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-10 1-2 20230616

York Sample ID: 23F1134-38

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:00 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/24/2023 06:19	BCJ
Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP									
72-55-9	4,4'-DDE	7.11		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 16:45	06/24/2023 06:19	BCJ
Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP									

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-10 1-2 20230616

York Sample ID: 23F1134-38

York Project (SDG) No.

23F1134

Client Project ID

20230293

Matrix

Soil

Collection Date/Time

June 16, 2023 12:00 pm

Date Received

06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-29-3	4,4'-DDT	2.17		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
60-57-1	Dieldrin	5.49		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 16:45	06/24/2023 06:19	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 16:45	06/24/2023 06:19	BCJ

Surrogate Recoveries

Result

Acceptance Range

2051-24-3	Surrogate: Decachlorobiphenyl	66.2 %	30-150
877-09-8	Surrogate: Tetrachloro-m-xylene	50.8 %	30-150

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.8	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 21:17	BCJ
19719-28-9	Surrogate Recoveries	Result		Acceptance Range						
	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	65.4 %		21-150						

Sample Information

Client Sample ID: SB-10 1-2 20230616

York Sample ID: 23F1134-38

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:00 pm

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	13.9		mg/kg dry	1.15	1	EPA 6010D	06/22/2023 12:03	06/25/2023 19:51	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	30.0		mg/kg dry	0.384	1	EPA 6010D	06/22/2023 12:03	06/25/2023 19:51	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0353		mg/kg dry	0.0331	1	EPA 7473	06/22/2023 15:21	06/22/2023 21:15	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	90.5		%	0.100	1	SM 2540G	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-11 0-1 20230616

York Sample ID: 23F1134-41

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:38 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 19:20	06/24/2023 06:37	BCJ
72-55-9	4,4'-DDE	12.6		ug/kg dry	1.64	5	EPA 8081B	06/20/2023 19:20	06/24/2023 06:37	BCJ

Sample Information

Client Sample ID: SB-11 0-1 20230616

York Sample ID: 23F1134-41

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:38 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 19:20	06/24/2023 06:37	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:37	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3	Surrogate: Decachlorobiphenyl	79.4 %
877-09-8	Surrogate: Tetrachloro-m-xylene	30-150

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.0	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 21:28	BCJ

Surrogate Recoveries

	Result	Acceptance Range

Sample Information

Client Sample ID: SB-11 0-1 20230616

York Sample ID: 23F1134-41

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:38 pm

Date Received
06/16/2023

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
19719-28-9	Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)	58.4 %			21-150					

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	36.6		mg/kg dry	1.11	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:54	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	82.6		mg/kg dry	0.370	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:54	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0366		mg/kg dry	0.0319	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:41	06/22/2023 19:53	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	94.0		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-11 1-2 20230616

York Sample ID: 23F1134-42

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:38 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Information

Client Sample ID: SB-11 1-2 20230616

York Sample ID: 23F1134-42

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
23F1134	20230293	Soil	June 16, 2023 12:38 pm	06/16/2023

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
72-55-9	4,4'-DDE	3.59		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
319-85-7	beta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
319-86-8	delta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
60-57-1	Dieldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
959-98-8	Endosulfan I	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
33213-65-9	Endosulfan II	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 19:20	06/24/2023 06:55	BCJ
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
72-20-8	Endrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ
76-44-8	Heptachlor	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 06:55	BCJ

Surrogate Recoveries

	Result	Acceptance Range
2051-24-3 Surrogate: Decachlorobiphenyl	66.2 %	30-150
877-09-8 Surrogate: Tetrachloro-m-xylene	51.8 %	30-150

Herbicides, NYSDEC Part 375 Target List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 3550C/8151A

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
---------	-----------	--------	------	-------	-----------------	----------	------------------	--------------------	--------------------	---------

Sample Information

Client Sample ID: SB-11 1-2 20230616

York Sample ID: 23F1134-42

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:38 pm

Date Received
06/16/2023

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	21.6	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 21:39	BCJ
Surrogate Recoveries										
19719-28-9 Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)										
Result Acceptance Range										
71.8 % 21-150										

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	17.7		mg/kg dry	1.13	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:56	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	31.4		mg/kg dry	0.376	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:56	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0324	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:41	06/22/2023 20:03	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.5		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-11 2-3 20230616

York Sample ID: 23F1134-43

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 12:38 pm

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	15.7		mg/kg dry	1.13	1	EPA 6010D	07/03/2023 08:08	07/06/2023 16:22	CEG

Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP

Total Solids

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	92.1		%	0.100	1	SM 2540G	06/29/2023 13:38	06/30/2023 07:39	VR

Certifications: CTDOH-PH-0723

Sample Information

Client Sample ID: SB-12 0-1 20230616

York Sample ID: 23F1134-45

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 1:03 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	3.60		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
72-55-9	4,4'-DDE	74.0		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
50-29-3	4,4'-DDT	12.8		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
309-00-2	Aldrin	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
319-84-6	alpha-BHC	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	NELAC-NY10854,NJDEP		
319-85-7	beta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		
319-86-8	delta-BHC	ND		ug/kg dry	1.63	5	EPA 8081B	06/20/2023 19:20	06/24/2023 07:13	BCJ
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP		

Sample Information

Client Sample ID: SB-12 0-1 20230616

York Sample ID: 23F1134-45

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 1:03 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
60-57-1	Dieldrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:13	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:13	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 19:20	06/24/2023 07:13	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:13	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:13	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:13	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.63	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:13	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>		57.2 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>		42.1 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	22.7	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 21:49	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>		68.8 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	20.9		mg/kg dry	1.19	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:59	CEG

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615				■		132-02 89th AVENUE		RICHMOND HILL, NY 11418	

Sample Information

Client Sample ID: SB-12 0-1 20230616

York Sample ID: 23F1134-45

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 1:03 pm

Date Received
06/16/2023

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	48.4		mg/kg dry	0.398	1	EPA 6010D Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/22/2023 12:03	06/25/2023 19:59	CEG

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	0.0525		mg/kg dry	0.0343	1	EPA 7473 Certifications: CTDOH-PH-0723,NJDEP,NELAC-NY10854,PADEP	06/22/2023 15:41	06/22/2023 20:12	AGNR

Total Solids

Sample Prepared by Method: % Solids Prep

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	87.4		%	0.100	1	SM 2540G Certifications: CTDOH-PH-0723	06/23/2023 08:06	06/23/2023 13:04	VR

Sample Information

Client Sample ID: SB-12 1-2 20230616

York Sample ID: 23F1134-46

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 1:03 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
72-54-8	4,4'-DDD	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ
72-55-9	4,4'-DDE	7.09		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ
50-29-3	4,4'-DDT	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ
309-00-2	Aldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ
319-84-6	alpha-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ

Sample Information

Client Sample ID: SB-12 1-2 20230616

York Sample ID: 23F1134-46

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 1:03 pm

Date Received
06/16/2023

Pesticides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
5103-71-9	alpha-Chlordane	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: NELAC-NY10854,NJDEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
319-85-7	beta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
319-86-8	delta-BHC	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
60-57-1	Dieldrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
959-98-8	Endosulfan I	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
33213-65-9	Endosulfan II	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854	06/20/2023 19:20	06/24/2023 07:30	BCJ	
1031-07-8	Endosulfan sulfate	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
72-20-8	Endrin	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
58-89-9	gamma-BHC (Lindane)	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
76-44-8	Heptachlor	ND		ug/kg dry	1.64	5	EPA 8081B Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/20/2023 19:20	06/24/2023 07:30	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
2051-24-3	<i>Surrogate: Decachlorobiphenyl</i>		73.4 %	30-150							
877-09-8	<i>Surrogate: Tetrachloro-m-xylene</i>		58.3 %	30-150							

Herbicides, NYSDEC Part 375 Target List

Sample Prepared by Method: EPA 3550C/8151A

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
93-72-1	2,4,5-TP (Silvex)	ND		ug/kg dry	22.1	1	EPA 8151A Certifications: CTDOH-PH-0723,NELAC-NY10854,NJDEP,PADEP	06/19/2023 10:13	06/21/2023 22:00	BCJ	
Surrogate Recoveries		Result	Acceptance Range								
19719-28-9	<i>Surrogate: 2,4-Dichlorophenylacetic acid (DCAA)</i>		74.8 %	21-150							

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

Log-in Notes:

Sample Notes:

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120 RESEARCH DRIVE	STRATFORD, CT 06615			■	132-02 89th AVENUE			RICHMOND HILL, NY 11418		
www.YORKLAB.com	(203) 325-1371				FAX (203) 357-0166			ClientServices@		

Sample Information

Client Sample ID: SB-12 1-2 20230616

York Sample ID: 23F1134-46

York Project (SDG) No.
23F1134

Client Project ID
20230293

Matrix
Soil

Collection Date/Time
June 16, 2023 1:03 pm

Date Received
06/16/2023

Arsenic by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7440-38-2	Arsenic	13.6		mg/kg dry	1.17	1	EPA 6010D	06/22/2023 12:03	06/25/2023 20:01	CEG

Log-in Notes:

Sample Notes:

Lead by EPA 6010

Sample Prepared by Method: EPA 3050B

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead	31.1		mg/kg dry	0.392	1	EPA 6010D	06/22/2023 12:03	06/25/2023 20:01	CEG

Log-in Notes:

Sample Notes:

Mercury by 7473

Sample Prepared by Method: EPA 7473 soil

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-97-6	Mercury	ND		mg/kg dry	0.0338	1	EPA 7473	06/22/2023 15:41	06/22/2023 20:21	AGNR

Log-in Notes:

Sample Notes:

Total Solids


Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	* % Solids	88.7		%	0.100	1	SM 2540G	06/23/2023 08:07	06/23/2023 14:47	sgs

Log-in Notes:

Sample Notes:

Sample and Data Qualifiers Relating to This Work Order

P This qualifier indicates the compound detected exhibited greater than 40% between the quantitation and confirmatory columns.

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon current NELAC/TNI Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

Revision Description: This report has been revised to report As for samples: SB-1 (2-3), SB-3 (2-3), SB-4 (2-3), SB-5 (2-3), SB-7 (2-3), SB-11 (2-3).

Field Chain-of-Custody Record

23F1134

YORK Project No.

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

120 Research Drive Stratford, CT 06615 132-02 89th Ave Queens, NY 11418 56 Church Hill Rd. #2 Newtown, CT 06470

YOUR Information

Company: PINE ENGINEERING	Report To:	Invoice To:	YOUR Project Number
Address: 48 SPRINGSIDE AVENUE POUGHKEESE, NY 12503	Company: <i>Anthony J. Spadavachia</i>	Address: <i>Anthony J. Spadavachia</i>	20230293
Phone: 845-454-2544	Phone:	Phone:	Turn-Around Time
Contact: T. SPADAVACHIA	Contact: Conor Tarbell	Contact: Tara Aviardo	RUSH - Next Day
E-mail: ASPADEVACHIA@PINE-LLC.COM	E-mail:	E-mail:	RUSH - Two Day
			RUSH - Three Day
			RUSH - Four Day
			RUSH - Five Day
			Standard (6-9 Day) <input checked="" type="checkbox"/>
			PFAS Standard is 7-10 Days

Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved.

Anthony J. Spadavachia

Anthony J. Spadavachia

Samples Collected by: (print AND sign your name)

Matrix Codes	Samples From			Report / EDD Type (circle selections)
S - soil / solid	New York	<input checked="" type="checkbox"/> Summary Report	CT RCP	EQuiS (Standard)
GW - groundwater	New Jersey	<input type="checkbox"/> QA Report	CT RCP DQA/DUE/NYSDEC/EQUIS	
DW - drinking water	Connecticut	<input type="checkbox"/> CMDP	NUJDEP Reduced	
WW - wastewater	Pennsylvania	<input type="checkbox"/> Standard Excel EDD	Deliverables	
O - Oil	Other:	<input type="checkbox"/> NY ASP B Package	Other:	

Sample Matrix	Date/Time	Sampled	Analyses Requested	Container Type	No.
5	6/16/2023	0734	•PART 375 LIST PESTIDES VIA USEPA 8081; •PART 375 LIST HERRICIDES VIA USEPA 9151; •MERCURY VIA USEPA METH 7471; AND •ARSENIC + LEAD VIA USEPA METH 6010.	4oz	1
		0734			
		0734			
		0734			
		0746			
		0746			
		0746			
		0746			
		0805			
		0805			

Compared to the following

Regulation(s): (please fill in)

NUJDEP

NUJDEP SRP HazSite

NY ASP B Package

Other:

Preservation: (check all that apply)

HCl	<input type="checkbox"/> MeOH	<input type="checkbox"/> HNO3	<input type="checkbox"/> H2SO4	<input type="checkbox"/> NaOH	Special Instruction
ZnAc	<input type="checkbox"/> Ascorbic Acid	<input type="checkbox"/> Other			Field Filtered
					Lab to Filter

1. Samples Received by / Company *Jeff Yor*

2. Samples Relinquished by / Company *Jeff Yor*

3. Samples Received by / Company *Jeff Yor*

4. Samples Received by / Company *Jeff Yor*

Samples Received by / Company	Date/Time	Samples Received in LAB by	Date/Time
<i>Jeff Yor</i>	06-16-23 / 1330	<i>Jeff Yor</i>	6/16/2023 1330
Samples Relinquished by / Company	Date/Time	Samples Relinquished by / Company	Date/Time
<i>Jeff Yor</i>	06-16-23 / 1330	<i>Jeff Yor</i>	6/16/2023 1330
Samples Received by / Company	Date/Time	Samples Received by / Company	Date/Time
<i>Jeff Yor</i>	06-16-23 / 1330	<i>Jeff Yor</i>	6/16/2023 1330
Samples Relinquished by / Company	Date/Time	Samples Relinquished by / Company	Date/Time
<i>Jeff Yor</i>	06-16-23 / 1330	<i>Jeff Yor</i>	6/16/2023 1330

Field Chain-of-Custody Record

YORK Project No.
21F134

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document.
This document serves as your written authorization for YORK to proceed with the analyses requested below.
Your signature binds you to YORK's Standard Terms & Conditions.

120 Research Drive Stratford, CT 06615

56 Church Hill Rd. #2 Newtown, CT 06470

11418

56

89th Ave Queens, NY

132-02

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: PVC ENGINEERING

Address:

Phone: 845-454-2544

Contact: CONOR TARBELL

E-mail: A.SPADAVE@YAHOO.COM

Report To:

Company: YORK

Address:

Phone:

Contact:

E-mail:

Invoice To:

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

clientservices@yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

YOUR Project Number

800-306-YORK

www.yorklab.com

56

Church Hill Rd. #2

Newtown, CT 06470

56

Springfield Avenue

48

Springfield Avenue

12603

Poughkeepsie, NY

12603

Company: YORK

Address:

Phone:

Contact:

E-mail:

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

Field Chain-of-Custody Record

YORK Project No.
23F1134

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document.
This document serves as your written authorization for YORK to proceed with the analyses requested below.
Your signature binds you to YORK's Standard Terms & Conditions.

120 Research Drive Stratford, CT 06615 132-02 89th Ave Queens, NY 11418 56 Church Hill Rd. #2 Newtown, CT 06470

clientservices@yorklab.com

www.yorklab.com

800-306-YORK

5 of 5

Page 5

YOUR Information

Company: PTC ENGINEERING Report To: Anthony J. Spatavecchia
 Address: 48 Spring Side Avenue Company: PTC ENGINEERING
Bogota, NJ 07603 Address: 48 Spring Side Avenue
 Phone: 973-454-2544 Phone: 973-454-2544
 Contact: Connie Tarcelli Contact: Connie Tarcelli
 E-mail: ASPAV@GMAIL.COM E-mail: ASPAV@GMAIL.COM

Please print clearly and legibly. All information must be complete.
Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved.

ANTHONY J. SPATAVECCIA

Anthony J. Spatavecchia

Collected by: (print AND sign your name)

Invoice To: TAIYARAO@PINE-LLC.COM
 Company: TAIYARAO@PINE-LLC.COM
 Address: TAIYARAO@PINE-LLC.COM
 Phone: TAIYARAO@PINE-LLC.COM
 Contact: TAIYARAO@PINE-LLC.COM
 E-mail: TAIYARAO@PINE-LLC.COM

YOUR Project Number

20230293

YOUR Project Number

20230293

YOUR Project Name

20230293

YOUR PO#:

20230293

Turn-Around Time

RUSH - Next Day

RUSH - Two Day

RUSH - Three Day

RUSH - Four Day

RUSH - Five Day

Standard (6-9 Day)

PFAS Standard is 7-10 Days

YORK Reg. Comp.

Compared to the following

Regulation(s): (please fill in)

EQUIS (Standard)

EQUIS (Standard)

CT RCP

CT RCP DQA/DUE/NYSDEC/EQUIS

QA Report

NJDKP

NJDEP Reduced

NJDEP SRP HazSite

Deliverables

NJDEP SRP HazSite

Other:

NY ASP B Package

Report To:

Company: PTC ENGINEERING

Address: 48 Spring Side Avenue

Phone: 973-454-2544

Contact: Connie Tarcelli

E-mail: ASPAV@GMAIL.COM

Report From:

Company: TAIYARAO@PINE-LLC.COM

Address: TAIYARAO@PINE-LLC.COM

Phone: TAIYARAO@PINE-LLC.COM

Contact: TAIYARAO@PINE-LLC.COM

E-mail: TAIYARAO@PINE-LLC.COM

Matrix Codes

S - soil / solid

GW - groundwater

DW - drinking water

WW - wastewater

O - Oil

Other

Samples From

New York

New Jersey

Connecticut

Pennsylvania

Other:

Report / EDD Type (circle selections)

Summary Report

QA Report

CMDP

Standard Excel EDD

NY ASP B Package

Other:

Analyses Requested

Date/Time Sampled

Sample Matrix

Sample Identification

Comments: *PLEASE HOLD ALL 2-3 AND 3-4 SAMPLES*

06-16-23 1238

Part 375 List Pesticides via USEPA 8081; 4oz

1

06-16-23 1238

Part 375 List Herbicides via USEPA 8151;

1

06-16-23 1238

MERCURY via USEPA Method 7471-AWS

1

06-16-23 1238

ARSENIC AND LEAD via USEPA Method 6010.

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23 1303

1

06-16-23

Technical Report

prepared for:

PVE
48 Springside Avenue
Poughkeepsie, NY 12603
Attention: Trevor Treglia

Report Date: 07/06/2023

Client Project ID: 20230293-0001

York Project (SDG) No.: N3F0801

CT Cert. No. PH-0800

New York Cert. No. 11706

56 Church Hill Road #2

Newtown, CT 06470

www.YORKLAB.com

(203) 270-9973

FAX (203) 270-3348

ClientServices@yorklab.com

Report Date: 07/06/2023
Client Project ID: 20230293-0001
York Project (SDG) No.: N3F0801

PVE
48 Springside Avenue
Poughkeepsie, NY 12603
Attention: Trevor Treglia

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 19, 2023 and listed below. The project was identified as your project: **20230293-0001**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

Please contact Client Services at 203-270-9973 with any questions regarding this report.

<u>York Sample ID</u>	<u>Client Sample ID</u>	<u>Matrix</u>	<u>Date Collected</u>	<u>Date Received</u>
N3F0801-01	SW-1	Drinking Water	06/16/2023	06/19/2023

YORK
ANALYTICAL LABORATORIES INC

Sample Information

Client Sample ID: SW-1

York Sample ID: N3F0801-01

York Project (SDG) No.

N3F0801

Client Project ID

20230293-0001

Matrix

Drinking Water

Collection Date/Time

June 16, 2023 12:30 pm

Date Received

06/19/2023

Field Analyses:

Log-in/Sample Notes:

Analysis Conducted by: Pace Analytical - EnviroTest Analytical Labs

Results

Parameter	Result	Units	Qualifier	MCL	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Arsenic	< 1.4	ug/L		-	EPA 200.8	06/28/2023 00:00 Certifications:	06/29/2023 15:03	JC

Analysis Conducted by: Phoenix Environmental Laboratories, Inc. S

Results

Parameter	Result	Units	Qualifier	MCL	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Mercury	<0.0002	mg/L		-	EPA 245.1	06/22/2023 00:00 Certifications:	06/22/2023 00:00	PHO
1,2-Dibromoethane	< 0.01	ug/L		-	EPA 504.1	06/22/2023 00:00 Certifications:	06/22/2023 00:00	PHO
1,2-Dibromo-3-chloropropane	< 0.02	ug/L		-	EPA 504.1	06/22/2023 00:00 Certifications:	06/22/2023 00:00	PHO
2,4-D	< 0.1	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Dalapon	< 1.0	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Dicamba	< 0.50	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Dinoseb	< 0.20	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Pentachlorophenol	< 0.040	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Picloram	< 0.10	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
2,4,5-TP (Silvex)	< 0.2	ug/L		-	EPA 515.3	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Oxamyl	< 2.0	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
Methomyl	< 0.50	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
Carbofuran	< 0.90	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO

56 Church Hill Road #2

www.YORKLAB.com

(203) 270-9973

Newtown, CT 06470

FAX (203) 270-3348

ClientServices

Page 3 of 9

YORK
ANALYTICAL LABORATORIES INC

Sample Information

<u>Client Sample ID:</u> SW-1	<u>York Sample ID:</u>	N3F0801-01		
<u>York Project (SDG) No.</u> N3F0801	<u>Client Project ID</u> 20230293-0001	<u>Matrix</u> Drinking Water	<u>Collection Date/Time</u> June 16, 2023 12:30 pm	<u>Date Received</u> 06/19/2023
Field Analyses:	<u>Log-in/Sample Notes:</u>			

Analysis Conducted by: Phoenix Environmental Laboratories, Inc. S

Results

Parameter	Result	Units	Qualifier	MCL	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Carbaryl	< 0.50	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
Aldicarb Sulfoxide	< 0.50	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
Aldicarb Sulfone	< 0.80	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
Aldicarb	< 0.50	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
3-Hydroxycarbofuran	< 0.50	ug/L		-	EPA 531.2	06/28/2023 00:00 Certifications:	06/28/2023 00:00	PHO
Diquat	< 0.40	ug/L		-	EPA 549.2	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Glyphosate	< 5.0	ug/L		-	EPA 547	06/23/2023 00:00 Certifications:	06/23/2023 00:00	PHO
Alachlor	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Atrazine	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Butachlor	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Metolachlor	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Metribuzin	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Simazine	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Aldrin	< 0.10	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Chlordane	< 0.19	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Dieldrin	< 0.03	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO

Sample Information

<u>Client Sample ID:</u> SW-1	<u>York Sample ID:</u>	N3F0801-01
<u>York Project (SDG) No.</u> N3F0801	<u>Client Project ID</u> 20230293-0001	<u>Matrix</u> Drinking Water
<u>Field Analyses:</u>		<u>Collection Date/Time</u> June 16, 2023 12:30 pm
		<u>Date Received</u> 06/19/2023

Analysis Conducted by: Phoenix Environmental Laboratories, Inc. S

Results

Parameter	Result	Units	Qualifier	MCL	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Endrin	< 0.01	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Heptachlor	< 0.04	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Heptachlor epoxide	< 0.02	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Hexachlorobenzene	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Hexachlorocyclopentadiene	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Lindane	< 0.02	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Methoxychlor	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Propachlor	< 0.05	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO
Toxaphene	< 0.95	ug/L		-	EPA 525.3	06/26/2023 00:00 Certifications:	06/26/2023 00:00	PHO

Definitions and Other Information

<0.0002 <0.0002

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

MCL The Maximum Contaminant Level (MCL) is the maximum concentration of a chemical that is allowed in public drinking water systems. The MCL is established by the U.S. Environmental Protection Agency (EPA). Some states have MCLs that are equal to or less than the Federally established MCL. The listed MCL value reflects the MCL established by the State where the sample was taken.

General Notes for N3F0801

1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Date: July 06, 2023

Charles Morrow
Technical Director

Field Chain-of-Custody Record

YORK Project No.

YORK Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document.
 This document serves as your written authorization for YORK to proceed with the analyses requested below.

Your signature binds you to YORK's Standard Terms & Conditions.

120 Research Drive Stratford, CT 06615

132-02 89th Ave Queens, NY 11418

Report To:

N

clientservices@yorklab.com

www.yorklab.com

800-306-YORK

800-306-9675

Page 1 of 1

YOUR Information

Report To:

Invoice To:

YOUR Project Number

Turn-Around Time

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

Phone: N

Contact: N

E-mail: N

Company: N

Address: N

SOC Kit Quantity List

Please list the quantity of each bottle you are submitting to the laboratory in the appropriate space provided below and return this document with your samples and Chain of Custody.

The SOC Kit Quantity List must be submitted to facilitate timely processing of your samples. If you need a replacement copy or have any other inquiries about this process, please contact Krystal Houle at khoule@phoenixlabs.com or 860-645-1102.

531 (2) 60mL Amber Vials *Chlor. – C6H7K07/Na2S203 or Non-Chlor. – C6H7K07*

547 (2) 60mL Amber Vials *Na2S203*

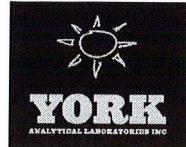
504 (2) 40mL Vials *Chlor. – Na2S203 or Non-Chlor. – As Is*

548 (2) 40 mL Amber Vials *Na2S203*

524 _____ (3) 40mL HCL Vials *Chlor. – HCL/Ascorbic Acid or Non-Chlor. – HCL*

525 (2) Liter Ambers *AA, K Citrate, EDTA*

508 _____ (1) Liter Amber *Chlor. – Na2S203 or Non-Chlor. – As Is*


515 (1) 8oz Amber *Chlor. – Na2S203 or Non-Chlor. – As Is*

549 (2) 500mL Amber Plastic *Na2S203*

DIOXIN _____ (2) Liter Amber *As Is*

TRIP BLANKS (504) _____ (2) 40mL Vials *Chlor. – Na2S203 or Non-Chlor. – As Is*

TRIP BLANKS (524) _____ (2) 40mL HCL Vials

Laboratory Analysis Quotation

Client Contact: **Conor Tarbell**
 Prepared for: **PVE, LLC.**
 Prepared By: **Lou Russo**

Prepared on: **06/14/2023**
 Effective: **06/14/2023**
 Expires: **12/31/2023**

Client Project ID: Drinking Water

Pricing Summary (Commonly Requested Items-Call for Other Requests)

Parameter	Method	Quantity	TAT (days)	Unit Price	Extended Price
Drinking Water					
Arsenic by EPA200.8 ✓	EPA 200.8	1	6	\$12.00	\$12.00
Glyphosate (SUB) ✓	EPA 547	1	6	\$190.00	\$190.00
Herbicides (EPA 515) SUB ✓	EPA 515	1	6	\$160.00	\$160.00
Mercury by Cold Vapor 245.1 ✓	EPA 245.1	1	6	\$50.00	\$50.00
Pesticides-Carbamates-SUB ✓	EPA 531.2	1	6	\$190.00	\$190.00
Pesticide, Diquat-SUB ✓	EPA 549.2	1	6	\$190.00	\$190.00
Pesticides, EDB, DBCP SUB ✓	EPA 504.1	1	6	\$90.00	\$90.00
Semi-Volatiles, EPA 525 (SUB) ✓	EPA 525.3	1	6	\$300.00	\$300.00
Water					
Pesticides, Endothall (SUB) ✓	EPA 548	1	6	\$210.00	\$210.00
Additional Items					
Sample Disposal Fee		1		\$1.50	\$1.50
					Bid Total: \$1,393.50

Notes:

1. Rush Turn-Around is available at a premium. Please call for exact rates.
2. Prices include all appropriate sampling containers, labels, chain-of-custody forms and sample pick-up
3. York's Standard Terms and Conditions are attached and are hereby made part of this bid.
4. The 2.5 % Surcharge listed reflects a small offset for related courier and shipping cost increases.