

willingham
engineering

183 Main Street
New Paltz, NY 12561
T 845.255.0210 F 845.256.8110
www.willinghamengineering.com

September 5, 2024

Mr. Chris Brand, Chair and Board Members
Town of Marlborough Planning Board
21 Milton Turnpike
Milton, NY 12547

Re: **Summit Drive Properties LLC**
Summit Drive
Town of Marlborough, New York
Site Plan Application
SBL: 108.4-6-29.311

Dear Chair Brand and Planning Board Members:

We are pleased to resubmit a Site Plan Application for Summit Drive, SBL: 108.4-6-29.311. The parcel is 7.32 acres in size and is in the R – Residential District. The property is currently vacant. We appreciate the Board's feedback received from the Board at the Planning Board meeting on October 2, 2023.

The applicant, Summit Drive Properties LLC, proposes to construct (4) 6-unit multifamily dwellings on the property, which is a permitted use in the Residential District. The zoning district allows for a maximum density of 6 dwelling units per acre so the proposed 24 dwelling units are below the maximum allowable 43 dwelling units permitted by code. The property will access the cul-de-sac of Summit Drive with a 20' wide private driveway proposed leading to a 36-car parking lot designed per Town Code standards. The parking lot is proposed to have an emergency/fire truck turnaround area designed in accordance with NYS Building Code requirements. The project proposes to utilize municipal sewer facilities and will petition to be included in the municipal sewer district. Connection to existing sewer infrastructure on Grand Street is currently proposed. Municipal water service is also proposed for the site with connection to the existing water main on Summit Drive. A vegetative buffer area is proposed at the property boundaries to provide screening from adjacent properties.

Since the previous submittal we have met with the Town Highway Superintendent at the site to discuss snow plowing related to the cul-de-sac and proposed driveway entrance. The plans have been revised to reflect the discussion at the meeting, which includes an unencumbered, snow removal area on either side of the proposed driveway at the driveway entrance off Summit Drive. Additionally, the Highway Superintendent recommended eliminating lighting along the

roadway's entire entrance drive as this would impede the Town and developer's snow removal operations.

Additionally, since the previous submittal we have conducted a Phase 1 Archaeological Investigation as SHPO indicated the site is within an archaeologically sensitive area. A report of findings is included in this submission, with no historic artifacts or features encountered during the investigation.

Please find the attached documents for your review:

- Site Plans
- SWPPP
- Letter from Highway Superintendent – 4/10/24
- Phase 1 Archaeological Investigation

We are in receipt of the latest comment letter from Planning Board Engineer dated March 1, 2024. Item-by-item responses to these letters are provided below:

Planning Board Engineer - March 1, 2024

1. *Comment: The applicants are requested to further evaluate the Highway Superintendent's comments regarding snow plowing issues at the cul-de-sac with the access drive location.*

Response: As indicated above, we met with the Highway Superintendent at the site to discuss concerns related to snow plowing. We are proposing an unencumbered area on either side of the driveway just off of Summit Drive. Additionally, we are not proposing lighting along the entrance drive as this would impede snow removal operations. We are proposing landscaping along the property line which we believe can hold up to plowing operations as spaced far enough away from the driveway.

2. *Comment: The applicants were to attend a meeting with the Water and Sewer Department on 29 February 2024. Numerous issues regarding water and sewer on the site were to be addressed. The applicant's representatives are requested to follow up with the Planning Board with the results of this meeting. Specific comments from the Water and Sewer Superintendent should be received.*

Response: As discussed at the previous PB meeting, the results of the meeting with the Water and Sewer department include the following:

- Proposing a 30' wide joint utility easement onsite which will contain the proposed sewer infrastructure and provide space for a future water connection

- Providing and 8" water main and (2) fire hydrants as part of the proposed project. Connecting to the existing water main on Summit Drive

3. *Comment: This office has no record of circulating for Lead Agency. Lead Agency circulation should be undertaken at this time. It is noted that SHPO's response has not been received.*

Response: Comment noted. SHPO's response letter and the Archaeological Report indicating no impact are attached.

4. *Comment: The revised SWPPP is under review by this office. We continue to have a concern regarding the discharge location of the detention pond being located on a steep slope.*

Response: The discharge location of the detention pond is now proposed at the least steep location possible, which is a slope of approximately 7.5%.

5. *Comment: Initial SWPPP comment regarding the use of the level spreader identifies that "the receiving area shall have topography regular enough to prevent undo flow concentration before entering a stable water course but shall have a slope of less than 10%." Downgradient slopes from the level spreader greater than 10% and will result in concentrated flow.*

Response: The location of the level spreader has been revised so that it discharges to an area with a slope of 7.5% in accordance with practice requirements.

6. *Comment: We continue to have a concern regarding lighting at the access drive as well as landscaping to reduce impacts to adjoining residential properties.*

Response: Per our meeting with the Highway Superintendent as described above, we are not proposing lighting along the driveway entrance as this would inhibit snow plowing operations for both the Town and project developer. Additionally, we are now proposing landscaping along the driveway entrance to delineate the driveway, which will have less impact than lighting on neighboring properties. We feel that this proposed landscaping in tandem with vehicle headlights will provide sufficient visibility to the site entrance.

7. *Comment: The sanitary sewer system has been designed to utilize drop manholes to reduce velocity. Slopes have now been designed at a maximum of 10% utilizing drop manholes. Detail of the drop manholes should be provided in accordance with 10 State Standards.*

Response: A detail of a drop manhole is now provided in accordance with 10 State Standards.

8. Comment: *The manhole located on Grand Street should have the downgradient discharge invert labeled.*

Response: The downgradient discharge invert is now provided for the manhole on Grand Street.

9. Comment: *Provisions for water metering and back flow prevention must be designed into the proposed water system. As appropriate for the sprinkler connections to the building should be identified. Sprinkler feed lines should be valves such that potable water to the structure is terminated when fire protection systems are terminated. Sprinkler valve must be ahead of the potable water valve. Typical detail recommended is attached.*

Response: We are proposing a 4" ductile iron water line to come from the 8" main into a utility room in each building. Within this room, the water line will split to fire service / sprinklers and domestic use with a backflow preventer provided for the sprinkler feed lines. Additionally, a water meter will be installed within this utility room. A schematic detail is provided on sheet SD-3.

10. Comment: *The concrete wash out area should be added to the plans.*

Response: The concrete wash out area is shown on sheet SP-5 with a detail provided on sheet SD-4.

Thank you for your consideration of this matter and we look forward to meeting with the Board. Please feel free to contact me at your convenience with any questions.

Sincerely,
Willingham Engineering, PLLC

Matthew Towne, PE
NYS Professional Engineer No. 088562

SUPERINTENDENT OF HIGHWAYS

*Town of Marlborough
1650 Route 9W, P.O. Box 305
Milton, New York 12547*

John Alonge
Highway Superintendent

Phone: 845-795-2272 x 6
Fax: 845-795-6037
Cell: 845-849-5549

April 10, 2024

Town of Marlborough Planning Board

*Re: Summit Drive
108.4-6-29.311*

Chairman:

After meeting with the Developer and his Engineer, a snow removal load area will be designated in the beginning of the private road entering the development. I would recommend there be no lighting along the private roadway in its entirety, it would impede the Town's and developer's snow removal operations.

Sincerely,

*John Alonge
Highway Superintendent*

JA/cm

*cc: Town Engineer Pat Hines, MH&E
Nick Gallela*

New York State Parks, Recreation and Historic Preservation

KATHY HOCHUL
Governor

RANDY SIMONS
Commissioner *Pro Tempore*

ARCHAEOLOGY COMMENTS

Phase IA/IB Archaeological Survey Recommendation

Project: Summit Drive Properties LLC - Construction of Four (4) Multifamily Residences, Utilities and Infrastructure

PR#: 24PR01398

Date: March 1, 2024

The project is in an archaeologically sensitive location. Therefore, the State Historic Preservation Office/Office of Parks, Recreation and Historic Preservation (SHPO/OPRHP) recommends a Phase IA/IB archaeological survey for components of the project that will involve ground disturbance, unless substantial prior ground disturbance can be documented. A Phase IA/IB survey is designed to determine the presence or absence of archaeological sites or other cultural resources in the project's Area of Potential Effects (APE).

If you consider the entire project area to be disturbed, documentation of the disturbance will need to be reviewed by SHPO/OPRHP. Examples of disturbance include mining activities and multiple episodes of building construction and demolition. Documentation of ground disturbance typically consists of soil bore logs, photos, or previous project plans. Agricultural activity is not considered to be substantial ground disturbance.

Please note that in areas with alluvial soils or fill archaeological deposits may exist below the depth of superficial disturbances such as pavement or even deeper disturbances, depending on the thickness of the alluvium or fill. Evaluation of the possible impact of prior disturbance on archaeological sites must consider the depth of potentially culture-bearing deposits and the depth of planned disturbance by the proposed project.

Our office does not conduct archaeological surveys. A 36 CFR 61 qualified archaeologist should be retained to conduct the Phase IA/IB survey.

If you have any questions concerning archaeology, please contact Dr. Josalyn Ferguson at
Josalyn.Ferguson@parks.ny.gov.

Division for Historic Preservation

P.O. Box 189, Waterford, New York 12188-0189 • (518) 237-8643 • parks.ny.gov
● 518-237-8643 ● <https://parks.ny.gov/shpo> ●

Phase I Archaeological Investigation for the Summit Drive Housing Development
Marlborough, Ulster County, New York

August 2024

Prepared for:
Summit Drive Properties, LLC, Marlborough, New York

Alfred G. Cammisa, M.A.
with Alexander Padilla (CAD)

MANAGEMENT SUMMARY

PR#:
24PR01398

Involved agencies:
Town of Marlborough

Phase:
Phase IA & IB

Location:
Town of Marlborough
Ulster County

Survey Area:
Length: up to about 250 feet (76meters) north-south
Width: about 425 feet (130 m) east-west
Acres Surveyed: about 2 acres (.8 hectares)from a larger property

USGS:
Wappingers Falls, NY

Survey overview:
ST no. & interval: 33 ST's at 50 ft (15m) intervals
Size of freshly plowed area: na
Surface survey transect interval: na

Results:
No prehistoric or historic remains

Structures:
No. Of buildings/structures/cemeteries in project area: none
No. Of buildings/structures/cemeteries adjacent to project area: 3
No. Of previously determined NR listed or eligible buildings/structures/cemeteries/districts: none
No. Of identified eligible buildings/structures/cemeteries/districts: none

Authors:
Alfred G. Cammisa, M.A.
Alexander Padilla, B.A.

Date of Report:
Report completed August, 2024

TABLE OF CONTENTS

Introduction.....	1
Environment.....	1-2
Prehistoric Potential	3
Historic Potential.....	3-5
Field Methods.....	5-6
Field Results	6
Conclusions and Recommendations.....	6
Bibliography	6-7
Appendix 1: Figures and Photos	
Appendix 2: Shovel Test Notes	

LIST OF FIGURES

Figure 1	Wappingers Falls, New York USGS
Figure 2	Location of the ST's on the project area
Figure 3	1779 Sauthier map
Figure 4	1853 Landownership map
Figure 5	1875 Beers Town atlas
Figure 6	1903 USGS
Figure 7	County Soil Survey

LIST OF PHOTOS

Photo 1	From summit Drive
Photo 2	Towards ST 4
Photo 3	Towards ST 13
Photo 4	Towards ST 33

INTRODUCTION

Between July 28 and August 27, 2024, TRACKER Archaeology, Inc. conducted a Phase IA and IB Archaeological Investigation for the Summit Drive Housing Development, Town of Marlborough, Ulster County, New York.

The purpose of the Phase IA documentary study was to determine the prehistoric and historic potential of the project area for the recovery of archaeological remains. The Phase IA was implemented by a review of the original and current environmental data, archaeological site files, other archival literature, maps, interviews, and documents. The prehistoric and historic site file search was conducted utilizing the CRIS resources of the New York State Historic Preservation Office in Waterford. Various historic web sites may have been queried via the internet to review any pertinent site information.

These investigations have been conducted in accordance with the standards set forth by the New York Archaeological Council and the New York State Historic Preservation Office.

The Phase IB survey provided actual evidence for the presence or absence of any archaeological sites within the property through ground surface and subsurface field testing.

The project area consists about 2 acres with from a larger property. The project area is located at end of Summit Drive.

The investigation was completed by TRACKER Archaeology, Inc. of Monroe, New York. Prehistoric and historic research was conducted by PI, Alfred G. Cammisa, M.A. Field work was conducted by field directors, Alfred T. Cammisa, and Erin Murphy, B.A, B.A. Report preparation was by Alfred G. Cammisa with Alexander Padilla (CAD).

The work was performed for Summit Drive Properties, LLC, Marlborough, New York, New York.

ENVIRONMENT

Geology

The study area is located in the southeast portion of New York State in the northeast part of Orange County and the southern section of Ulster County.. This region of New York lies within the Ridge and Valley Physiographic Province near the interface of the Hudson Highlands. This province, also known as the Newer Appalachians, extends from Lake Champlain to Alabama. It passes as a narrow lowland belt between the New England Uplands (Taconic Mountains and Hudson Highlands) to the east and the Appalachian Plateau (Catskill and Shawangunk Mountains) and Adirondack Mountains to the west. The characteristic topography is a succession of parallel valleys and ridges trending roughly in a northeasterly direction. This is a region of sedimentary rocks which were easily eroded and subjected to folding or bedding of the rock layers. The eastern limit of the Ridge and Valley Province is a broad, well-defined valley, 300 to 600 feet above sea level, known as the Great Valley. In the vicinity of Ellenville, the Great Valley is called the Wallkill Valley (Schubert 1968: cover map, 16-18; Isachsen et al 2000: 4, 53-54; New York-New Jersey Trail Conference 1998: cover map).

Soils and Topography

Soils on the project area consist of:

Name	Soil Horizon Depth in(cm)	Color	Texture Inclusion	Slope %	Drainage	Land-form
Bath-Nassau	Ap=0-6n (0-15cm) B=6-11 (-28)	10YR4/3-3/3 10YR5/4	GrSiLo or ShSiLo	8-25	Well	Glacial till

(Tornes 1979:map, 138; pgs: 16-17, 110).

KEY:

Shade: Lt=Light, Dk=Dark, V=Very

Color: Br=Brown, Blk=Black, Gry=Gray, Gbr=Gray Brown, StBr=Strong Brown, Rbr=Red Brown, Ybr=Yellow Brown

Soils: Si=Silt, Lo=Loam, Sa=Sand, Cl=Clay

Other: Sh=shale, M=Mottle, Gr=Gravelly, Cb=cobbles, Ch=channery, Fi=Fine,/=or

Elevations on the project areas are approximately 300 feet above mean sea level.

Hydrology

The project area is about 3200 feet west of a tributary of Lattingtown Creek just before it drains into the Hudson River and about 4400 feet west of the Hudson River itself.

Vegetation

The predominant forest community in this area was probably the Oak Hickory. This forest is a nut producing forest with acorns and hickory nuts usually an obvious part of the leaf litter on the forest floor. The Oak Hickory Forest intermingles with virtually all other forest types. The northern extension of this forest community was also originally called the Oak-Chestnut forest, before the historic Chestnut blight (Kricher 1988:38, 57-60).

At the time of the Phase IB field work, the property consisted of an overgrown field.

PREHISTORIC POTENTIAL

A prehistoric site file search was conducted at the New York State Historic Preservation Office. The search included a 1 mile radius around the study area. The following sites were recorded:

NYSM Site	NYSHPO Site	Distance from APE ft(m)	Site Type
	11150.000004	1516(462)	Indian Burial Ground:On hill overlooking creek adjacent to colonial cemetery
	11150.000005	1855(565)	Smith's burial ground: Colonial period (taken from Woosley, 1908, book)

NYSM Site	NYSHPO Site	Distance from APE ft(m)	Site Type
	11150.000040	3049(929)	O.Culvert Site:4 debitage in plowed field
	11150.000026	3090(942)	Jennys Garden: Point mid-section, 3 FCR, 45 debitage

Assessing the known environmental and prehistoric data, we can summarize the following points:

- The project area is about 3200 feet west of a tributary of Lattingtown Creek just before it drains into the Hudson River and about 4400 feet west of the Hudson River itself.
- The property contains moderate to steeply sloping terrain with well drained soils.
- Prehistoric sites are situated in the vicinity of the project area.

In our opinion, the study area has an above average potential for the recovery of prehistoric sites. The type of site encountered could be a procurement/processing site from the Woodland or Archaic periods.

HISTORIC POTENTIAL

Seventeenth Century

At the time of European contact and settlement, the study area and surrounding territory were probably occupied by either the Warranawonkongs or the Waoranecks people, both of which interfaced near the study area. Both are branches of the Delaware linguistic group (Hearne Brothers nd:wall map; Becker 1993:19).

At the time of European contact and settlement, the study area was probably occupied by the Minsi group proper. The Waoranecks lived between Stony Point and Danns Kammer (near Newburgh Bay) with their western boundary unknown. The Waoraneck people were likely a sub-branch and/or clan or village related to the large Munsee (Minsi) tribe belonging to the Delawarean linguistic family. The term "Minsi" (or "Munsee") means people of the stony country" or abbreviated as "mountaineers" (Ruttenber 1992A:35, 44-45, 49-50, 93; Ruttenber 1992A:221; Becker 1993:16-22; Hearne Brothers nd:wall map; Weslager 1991:45; Synder 1969:2).

Population estimates for the Munsee are 600 to 800 individuals. The Munsee are described by Becker (1993:18) as possibly horticultural.

According to Ruttenber (1992A:94-95) the Warranawonkongs were an Esopus chieftaincy. The Warranawonkongs occupied a territory which extended from the Dans-Kammer to the Catskill mountains and which included the Wallkill drainage as well as the Shawangunk and Esopus.

Population of the Esopus were approximately 300. They are reported as foragers according to Becker (1993:18).

An Indian fort was supposed to have been constructed along the Shawangunk Kill. The fort was destroyed by Captain Kreiger and his men while pursuing the Indians for the recapture of the prisoners taken at the Esopus and Hurley massacres in 1663 (Foote 1907:377).

After the fort and cornfields were destroyed by Kreiger and his men (outside Indians and Dutch), a second fort was constructed about 4 hours from the original. It was located on the east bank of the Shawangunk Kill in Shawangunk. Kreiger destroyed the second fort as well. Both forts were located along Indian foot trails (Ruttenber 1992A:149-152; Ruttenber 1992B:391).

Eighteenth Century

In 1714, Luis Moses Gomez, the first Sephardic Jew in the county, purchased 2500 acres where several Indian trials converged and built a house near a stream. That stream was a central gathering place and camping ground for the local Indians. Luis and his son conducted a thriving fur trade with the Indians at the Mill House for more than 30 years (Mathews 1983).

During the Revolutionary War, the Mill House was sold to a Dutch-American patriot and used as a meeting center for the Patriot army. During the war the house had a second floor built (Mathews 1983).

The 1779 Sauthier map shows the study property located in Marlborough, north of Newburgh along/near the Albany Post Road (Figure 3).

Nineteenth Century

Bellis' factory was operating in Milton making wool and eiderdown material this century and Townsend's Crate Factory was as well down at the river (Mathews 1983).

The 1853 map of Marlborough shows the Carpenter house on RT 9 near the project property (Figure 4).

The 1875 Beers atlas of Marlborough shows no structures on or immediately adjacent to the project area (Figure 5).

Local industries included fruit as the principal industry, eiderdown & wool, a crate factory, as well as summer boarding vacation, at this time (Mathews 1983).

Twentieth Century

The 1903 USGS map depicts no structures immediately on or adjacent to the project area (Figure 6).

An historic site file search was conducted at the New York State Historic Preservation Office. The search included a 1 mile radius around the study area. The following sites were recorded:

NYSM Site	NYSHPO Site	Distance from APE ft(m)	Site Type
	1115.000005	1593(485)	Smith's Burial Ground: on hill overlooking Old Man's Creek
	11150.000043	2631(802)	Whitney basket Factory: above ground foundation from basket factory & paper factory, early-mid 19th century
	11150.000042	2681(817)	O.Covert/B.P. Agars Grist Mill:above ground foundation of stone & mortar 1858
	11150.000044	2844(867)	O.Covert House

NYSM Site	NYSHPO Site	Distance from APE ft(m)	Site Type
	11150.000041	2974(906)	Above ground foundation: early-mid 19th century w/yellowware, hp ceramic, sq.nail, mammal bone, whiteware, bottle glass proclaim

Assessing the known environmental and historic data, we can summarize the following points:

- The project area is about 3200 feet west of a tributary of Lattingtown Creek just before it drains into the Hudson River and about 4400 feet west of the Hudson River itself.
- The property contains moderate to steeply sloping terrain with well drained soils.
- Historic sites are in the neighborhood of the project area.
- Historic map documented structures were nearby the project area but not on or adjacent to it.

In our opinion, the project parcel has a moderate potential for the recovery of nineteenth century sites.

FIELD METHODS

Walkover

Covered ground terrain was reconnoitered at about 15 meter intervals, or less, to observe for any above ground features, such as berms, rock configurations, or depressions, which might be evidence for a prehistoric or historic site. Photographs were taken of the project area.

Shovel Testing

Shovel tests were excavated at 15 meter intervals across the project area. Steep slopes were avoided due to their poor potential for encountering archaeological sites. Each shovel test measured about 30 to 40 cm. in diameter and was dug into the underlying subsoil (B horizon) 10 to 20 cm. when possible. All soils were screened through 1/4 inch wire mesh and observed for artifacts. All shovel tests (ST's) were mapped on the project area map at this time.

Soils stratigraphy was recorded according to texture and color. Soil color was matched against the Munsell color chart for soils. Notes on ST stratigraphy and other information was transcribed on field forms and in a notebook.

FIELD RESULTS

Field testing of the project area included the excavation of 33 shovel tests. No prehistoric artifacts or features were encountered. No historic artifacts or features were encountered

Stratigraphy

Stratigraphy across the project corridor consisted of:

- O horizon -2 to 4 cm. thick of root mat, leaf litter, and humus.
- A horizon - 22 to 26 cm. thick of 10YR4/3 brown gravelly silty, hardpacked loam.
- B horizon - 10 or more dug into of 10YR5/6, yellow brown gravelly silty loam.

CONCLUSIONS AND RECOMMENDATIONS

The Phase IA had determined that based upon topographic characteristics and proximity to prehistoric sites, the property was assessed as having an above average potential for encountering prehistoric sites.

Based upon topographic characteristics and proximity to historic sites, historic map documented structures and roads, the property was assessed as having a moderate potential for encountering historic sites.

During the course of the Phase IB archaeological field survey, 33 ST's were excavated. No prehistoric artifacts or features were encountered. No historic artifacts or features were encountered. No further work is recommended.

BIBLIOGRAPHY

Anonymous

1910 A Brief History, Prepared for the seventy fifth anniversary celebration. American Reformed Church, Newburgh, New York.

Becker, Marshall Joseph

1993 The Lenape and Other "Delawarean" Peoples at the time of European Contact: Populations Estimates Derived from Archaeological and Historical sources, in *Journal of the New York State Archaeological Association*, #105 Spring.

Eagers, Samuel W.

1847 An Outline History of Orange County. S.T. Callahan, Newburgh.

Foote, Charles E.

1907 *History of Ulster County*. Alfonso T. Clearwater, editor.

Hasbrouck, Kenneth E.

1983 *History of Ulster County with emphasis on the Last 100 Years, 1883-1983*. Historians of Ulster County.

Kricher, John C. and Gordon Morison

1988 The Peterson Field Guide Series: Eastern Forests of North America. Houghton Mifflin Company, Boston.

Mathews, John

1983 The Town of Marlborough, in *The History of Ulster County with emphasis on the last 10 years*. Compiled by the Historians of Ulster County for the tercentenary Year

Morrison, David A.

1908 History of Orange County, New York. Van Deusen and Elms. Editor, Russell Headley.

New York-New Jersey Trail Conference

1998 New York Walk Book. New York-New Jersey Trail Conference.

Olsson, Karl S.

1981 Soil Survey of Orange County, New York. U.S. Department of Agriculture, Soil Conservation Service in Cooperation with Cornell University Agricultural Experimental Station.

Ruttenber, E.M.

1992A Indian Tribes of Hudson's River - to 1700. Hope Farm Press, Saugerties, New York.

1992B Indian Tribes of Hudson's River - 1700-1850. Hope Farm Press, Saugerties, New York.

Ruttenber, E.M. and L.H. Clarke

1881 History of Orange County, New York. Everts and Peck, Philadelphia.

Schuberth, Christopher J.

1968 The Geology of New York State and Environs. New York: Natural History Press.

Synder, John P.

1969 The Story of New Jersey's Civil Boundaries: 1606-1968. Bureau of Geology-Topography, New Jersey.

Tornes, Lawrence, A.

1979 *Soil Survey of Ulster County, New York*. U.S.D.A., soil conservation Service in cooperation with Cornell University Agricultural Experimental Station.

Town of Newburgh

2002 Newburgh's History. <http://www.newburghrevealed.org/historypalatine.htm>.

Weslager, C.A.

1991 The Delaware Indians - A History. Rutgers University Press, New Jersey.

Maps

Beers, F.W.

1875 County Atlas of Ulster County, New York. F.W. Beers, New York.

Hearne Brothers

no date Indians of New York. Earth Science Projection Map. Hearne Brothers, Michigan.

Sauthier, Claude Joseph

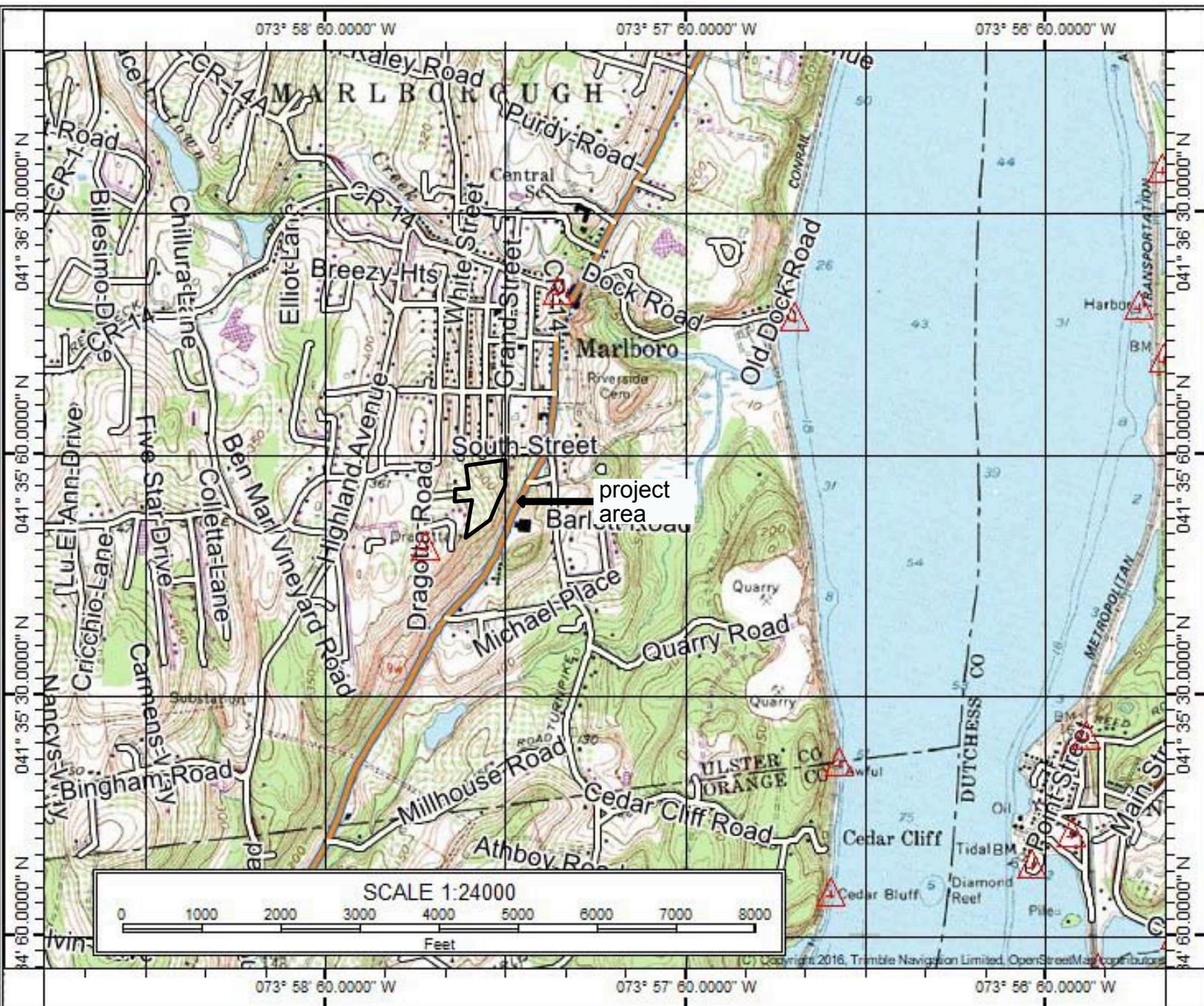
1779 A Chronological Map of the Province of New York in North America, Divided into Counties, manors, Patents, Townships, and Grants of Land. William Faden, London.

Sidney, J.H.

1850 Map of Orange County, New York. Newell S. Brown, Newburgh and Philadelphia.

United States Geologic Survey

1957 Newburgh, New York quadrangle map, 7.5 minute series.


1903 Newburgh, New York quadrangle map, 15 minutes series.

APPENDIX 1

Figure 1

N

Wappingers Falls, NY USGS

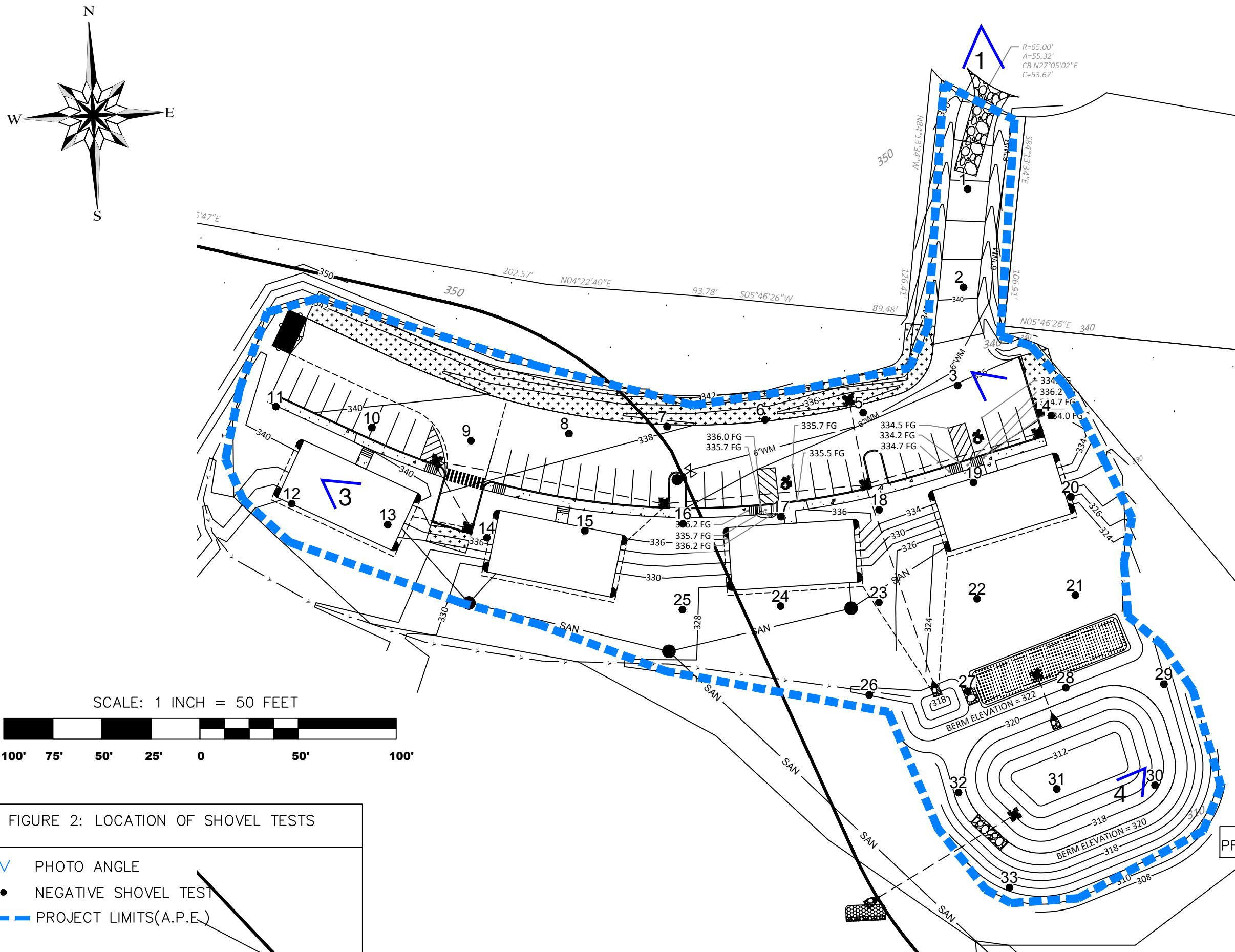
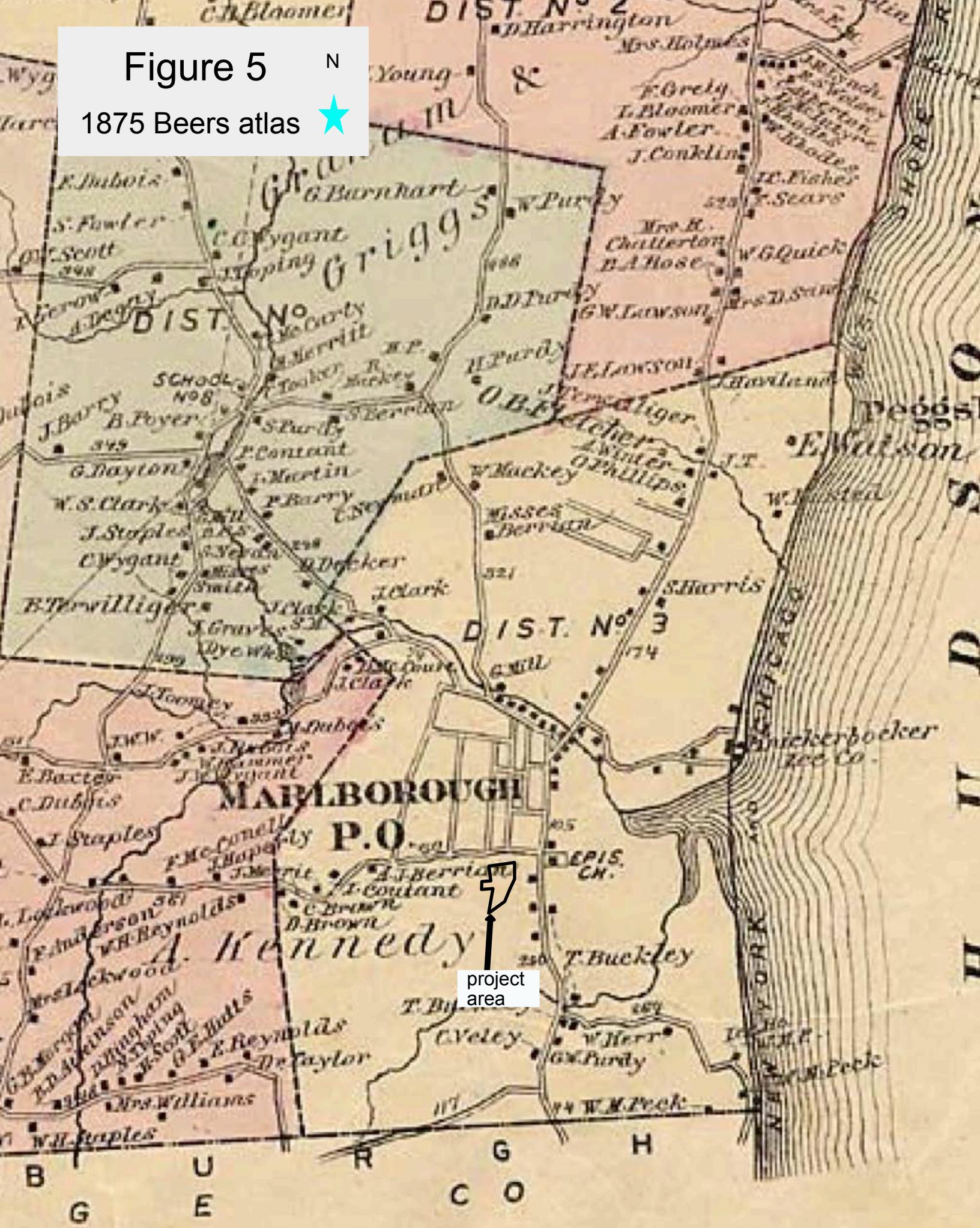
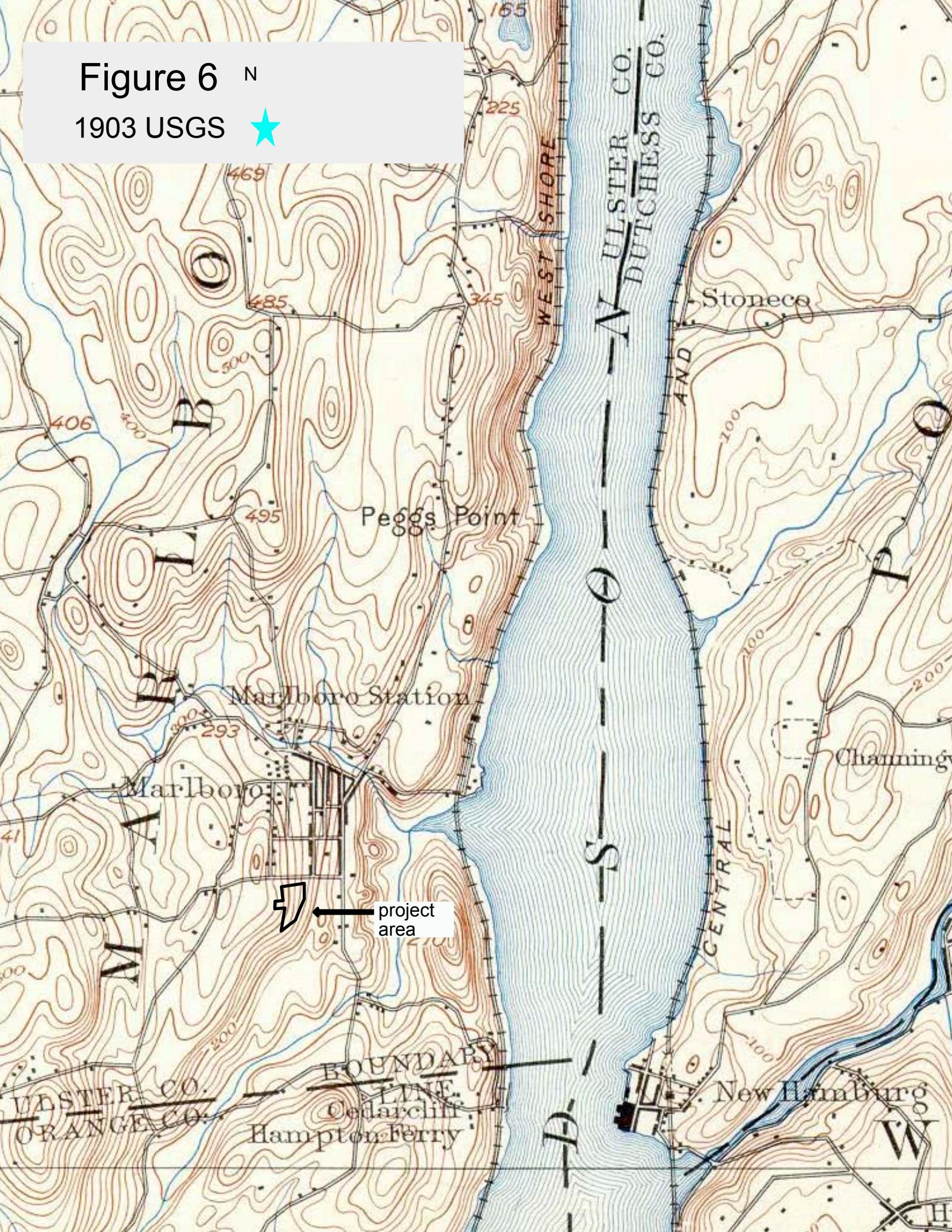


Figure 3
1779 Sauthier map

Figure 4


N

1853 Landownership map


Figure 5

1875 Beers atlas

Figure 6

1903 USGS

Figure 7

County Soil Survey

Photo 1

From Summit Drive

Photo 2

Towards ST 4

Photo 3

Towards ST 13

Photo 4
Toward ST 33

APPENDIX 2

SHOVEL TESTS

<u>STP</u>	<u>Lv</u>	<u>Depth(cm)</u>	<u>Texture</u>	<u>Color</u>	<u>Hor.</u>	<u>Comments</u>
1	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-27	GrSiLo, hardpack			NCM
	3	27-37	GrSiLo, hardpack			NCM
2	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM
3	1	0-5	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	5-28	GrSiLo, hardpack			NCM
	3	28-38	GrSiLo, hardpack			NCM
4	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM
5	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM
6	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM
7	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-27	GrSiLo, hardpack			NCM
	3	27-37	GrSiLo, hardpack			NCM
8	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM
9	1	0-3	rootmat,leave,humus	10YR4/3	A/O	NCM
	2	3-27	GrSiLo, hardpack			NCM
	3	27-30	GrSiLo, hardpack			NCM
10	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM
11	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-26	GrSiLo, hardpack,			NCM
	3	26-37	GrSiLo, hardpack			NCM
12	1	0-4	rootmat,leaves,humus	10YR4/3	A/O	NCM
	2	4-30	GrSiLo, hardpack			NCM
	3	30-40	GrSiLo, hardpack			NCM

13	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-27	GrSiLo, hardpack	10YR4/3	A	NCM
	3	27-40	GrSiLo, hardpack	10YR5/6	B	NCM
14	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-30	GrSiLo, hardpack	10YR4/3	A	NCM
	3	30-40	GrSiLo, hardpack	10YR5/6	B	NCM
15	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
16	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
17	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-27	GrSiLo, hardpack	10YR4/3	A	NCM
	3	27-37	GrSiLo, hardpack	10YR5/6	B	NCM
18	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-27	GrSiLo, hardpack	10YR4/3	A	NCM
	3	27-37	GrSiLo, hardpack	10YR5/6	B	NCM
19	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
20	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
21	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
22	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-25	GrSiLo, hardpack	10YR4/3	A	NCM
	3	25-35	GrSiLo, hardpack	10YR5/6	B	NCM
23	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-30	GrSiLo, hardpack	10YR4/3	A	NCM
	3	30-40	GrSiLo, hardpack	10YR5/6	B	NCM
24	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-26	GrSiLo, hardpack	10YR4/3	A	NCM
	3	26-36	GrSiLo, hardpack	10YR5/6	B	NCM
25	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-30	GrSiLo, hardpack	10YR4/3	A	NCM
	3	30-40	GrSiLo, hardpack	10YR5/6	B	NCM

26	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-30	GrSiLo, hardpack	10YR4/3	A	NCM
	3	30-40	GrSiLo, hardpack	10YR5/6	B	NCM
27	1	0-4	rootmat,leaves,humus		A/O	NCM
	2	4-30	GrSiLo, hardpack	10YR4/3	A	NCM
	3	30-40	GrSiLo, hardpack	10YR5/6	B	NCM
28	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-26	GrSiLo, hardpack	10YR4/3	A	NCM
	3	26-36	GrSiLo, hardpack	10YR5/6	B	NCM
29	1	0-5	rootmat,leaves,humus		A/O	NCM
	2	5-29	GrSiLo, hardpack	10YR4/3	A	NCM
	3	29-40	GrSiLo, hardpack	10YR5/6	B	NCM
30	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
31	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
32	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM
33	1	0-3	rootmat,leaves,humus		A/O	NCM
	2	3-28	GrSiLo, hardpack	10YR4/3	A	NCM
	3	28-38	GrSiLo, hardpack	10YR5/6	B	NCM